Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 014201    DOI: 10.1088/1674-1056/19/1/014201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Excitation of defect modes from the extended photonic band-gap structures of 1D photonic lattices

Zhou Ke-Ya(周可雅)a), Guo Zhong-Yi(郭忠义)a), Muhammad Ashfaq Ahmadb), and Liu Shu-Tian(刘树田)a)†
a Department of Physics, Harbin Institute of Technology, Harbin, 150001, China; b COMSATS Institute of Information Technology, Department of Physics, Lahore 54000, Pakistan
Abstract  This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bloch modes which are excited from the extended photonic band-gap structure at Bloch wave-numbers with kx = 0. The DMs for both positive and negative defects are considered in this method.
Keywords:  optical-induced photonic lattices      photonic band-gaps      defect modes  
Received:  04 March 2009      Revised:  02 April 2009      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  61.72.Bb (Theories and models of crystal defects)  
  63.20.Pw (Localized modes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10604042) and the National Basic Research Program of China (Grant No. 2006CB302901).

Cite this article: 

Zhou Ke-Ya(周可雅), Guo Zhong-Yi(郭忠义), Muhammad Ashfaq Ahmad, and Liu Shu-Tian(刘树田) Excitation of defect modes from the extended photonic band-gap structures of 1D photonic lattices 2010 Chin. Phys. B 19 014201

[1] Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystal: Molding the Flow of Light (Princeton: Princeton Univ. Press)
[2] Mingaleev S F and Kivshar Y S 2001 Phys. Rev. Lett. 86 5474
[3] Cai X H, Zheng W H, Ma X T, Ren G and Xia J B 2005 Chin. Phys. 14 2507
[4] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
[5] Aceves A B, Angelis C D, Trillo S and Wabnitz S 1994 Opt. Lett. 19 332
[6] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147
[7] Mandelik D, Eisenberg H S, Silberberg Y, Morandoti R and Aitchison J S 2003 Phys. Rev. Lett. 90 053902
[8] Peschel U, Morandotti R, Aitchison J, Eisenberg H S and Silberberg Y 1999 Appl. Phys. Lett. 75 1348
[9] Morandotti R, Eisenberg H S, Dandelik D, Silberberg Y, Modotto D, Sorel M, Stanley C R and Aitchison J S 2003 Opt. Lett. 28 834
[10] Molina M I and Kivshar Y S 2008 Opt. Lett. 33 917
[11] Fedele F, Yang J K and Chen Z G 2005 Stud. Appl. Math. 115 279
[12] Fedele F, Yang J K and Chen Z G 2005 Opt. Lett. 30 1506
[13] Wang J D, Yang J K and Chen Z G 2007 Phys. Rev. A 76 013828
[14] Wang X S, Yang J K, Chen Z G, Weinstein D and Yang J K 2006 Opt. Express 13 7362
[15] Makasyuk I, Chen Z G and Yang J K 2006 Phys. Rev. Lett. 96 223903
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[3] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[4] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[5] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[6] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[7] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[8] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[9] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[10] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[11] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[12] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[13] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[14] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[15] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
No Suggested Reading articles found!