Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(6): 2033-2039    DOI: 10.1088/1674-1056/17/6/017
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study on decay of the 4d core-excited states of Cs III

Ding Xiao-Bin(丁晓彬)a), Dong Chen-Zhong(董晨钟)a)b)†, and Stephan Fritzschec)
a College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; b Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator of Lanzhou, Lanzhou 730000, China ; c Department of Physics, University of Kassel, Heinrich-Plett-Stralphabeta e 40, D- 34132, Kassel, Germany
Abstract  In a recent XUV photoabsorption spectrum of Cs III ions by Cummings and O'Sullivan [2001 J. Phys. B  34 199], rather large linewidths were found for the ${\rm 4d}^{\,9} {\rm 5s}^2 {\rm 5p}^6 \,- \,{\rm 4d}^{\,10} {\rm 5s}^2 {\rm 5p}^5$ transition which are quite in disagreement with corresponding quasi-relativistic multiconfiguration Hartree--Fock (MCHF) calculation. In the present work, a detailed multiconfiguration Dirac-Fock study has been carried out to explore this discrepancy. Owing to the detailed consideration of electron correlation effects, some 'forbidden' Auger decay channels, such as ${\rm 4d}^{\,10} {\rm 5s}^2 {\rm 5p}^3 {\rm 5d} $ and ${\rm 4d}^{\,10} {\rm 5s}^0 {\rm 5p}^6 $, would become `open'. As a result, remarkable improvement of the linewidths has been obtained in our calculation. Furthermore, the theoretical Auger spectrum of the ${\rm 4d}^{\,9} {\rm 5s}^2 {\rm 5p}^6$ core-excited states of Cs III ions is given in the present work.
Keywords:  correlation effects      linewidth      Auger decay  
Received:  02 December 2007      Revised:  25 December 2007      Accepted manuscript online: 
PACS:  32.30.Jc (Visible and ultraviolet spectra)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  32.70.Jz (Line shapes, widths, and shifts)  
  32.80.Hd (Auger effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10434100 and 10774122), the Core-University Program between Japanese Society of Promotion of Science and Chinese Academy of Sciences, the Foundation of Center of theoretical

Cite this article: 

Ding Xiao-Bin(丁晓彬), Dong Chen-Zhong(董晨钟), and Stephan Fritzsche Theoretical study on decay of the 4d core-excited states of Cs III 2008 Chin. Phys. B 17 2033

[1] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[2] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[3] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[4] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[5] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[6] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[7] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[8] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[9] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[10] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[11] Correlation effects on the fine-structure splitting within the 3d9 ground configuration in highly-charged Co-like ions
Xue-Ling Guo(郭学玲), Min Huang(黄敏), Jun Yan(颜君), Shuang Li(李双),Kai Wang(王凯), Ran Si(司然), Chong-Yang Chen(陈重阳). Chin. Phys. B, 2016, 25(1): 013101.
[12] Cavity linewidth narrowing with dark-state polaritons
Gong-Wei Lin(林功伟), Jie Yang(杨洁), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2016, 25(1): 014201.
[13] Optically pumped quantum MxMR magnetometer with high oscillating magnetic field
Ding Zhi-Chao (丁志超), Yuan Jie (袁杰), Wang Zhi-Guo (汪之国), Yang Kai-Yong (杨开勇), Luo Hui (罗晖). Chin. Phys. B, 2015, 24(8): 083202.
[14] Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb
Fang Su (方苏), Jiang Yan-Yi (蒋燕义), Chen Hai-Qin (陈海琴), Yao Yuan (姚远), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生). Chin. Phys. B, 2015, 24(7): 074202.
[15] Influence of laser linewidth on performance of Brillouin optical time domain reflectometry
Hao Yun-Qi (郝蕴琦), Ye Qing (叶青), Pan Zheng-Qing (潘政清), Cai Hai-Wen (蔡海文), Qu Rong-Hui (瞿荣辉). Chin. Phys. B, 2013, 22(7): 074214.
No Suggested Reading articles found!