Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 083202    DOI: 10.1088/1674-1056/24/8/083202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optically pumped quantum MxMR magnetometer with high oscillating magnetic field

Ding Zhi-Chao (丁志超)a b, Yuan Jie (袁杰)a b, Wang Zhi-Guo (汪之国)a b, Yang Kai-Yong (杨开勇)a b, Luo Hui (罗晖)a b
a College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;
b Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
Abstract  A dip of the transverse component of the magnetic moment as a function of resonance frequency-detuning will emerge when the intensity of oscillating magnetic field exceeds a specific value, which is demonstrated theoretically and experimentally. The linewidth of magnetic-resonance signal can be much smaller than when the MxMR magnetometer operates on condition that the intensity of oscillating magnetic field is smaller than this specific value, and the MxMR magnetometer can possess a much higher signal-to-noise ratio. The experimental result shows that the sensitivity of MxMR magnetometer can be improved by an order of magnitude under this condition.
Keywords:  magnetic moment      linewidth      MxMR magnetometer      sensitivity  
Received:  20 January 2015      Revised:  09 March 2015      Accepted manuscript online: 
PACS:  32.80.Xx (Level crossing and optical pumping)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61475192) and the Science Research Program of National University of Defense Technology, China (Grant No. JC140702).
Corresponding Authors:  Yuan Jie, Wang Zhi-Guo     E-mail:  jieyuan@nudt.edu.cn;maxborn@nudt.edu.cn

Cite this article: 

Ding Zhi-Chao (丁志超), Yuan Jie (袁杰), Wang Zhi-Guo (汪之国), Yang Kai-Yong (杨开勇), Luo Hui (罗晖) Optically pumped quantum MxMR magnetometer with high oscillating magnetic field 2015 Chin. Phys. B 24 083202

[1] Brown J M, Smullin S J, Kornack T W and Romalis M V 2010 Phys. Rev. Lett. 105 151604
[2] Johnson C, Schwindt P D D and Weisend M 2010 Appl. Phys. Lett. 97 243703
[3] Mathéa V, Lévêquea F, Mathéb P E, Chevallierc C and Ponsc Y 2006 Appl. Geophys. 58 202
[4] Dehmelt H G 1957 Phys. Rev. 105 1487
[5] Bloom A L 1962 Appl. Opt. 1 61
[6] Groeger S, Bison G, Schenker J L, Wynands R and Weis A 2006 Eur. Phys. J. D 38 239
[7] Huang K K, Li N and Lu X H 2012 Chin. Phys. Lett. 29 100701
[8] Gu Y, Shi R Y and Wang Y H 2014 Acta. Phys. Sin. 63 110701 (in Chinese)
[9] Aleksandrov E B and Vershovskii A K 2009 Phys. Uspekhi 52 573
[10] Billings S D 2004 IEEE Trans. Geosci. Remote Sens. 42 1241
[11] Vershovskii A K and Pazgalev A S 2011 Tech. Phys. Lett. 37 23
[12] Vershovskii A K, Dmitriev S P and Pazgalev A S 2013 Tech. Phys. 58 1481
[13] Vershovskii A K, Pazgalev A S and Alexandrov E B 2014 Laser Phys. 24 074017
[14] Happer W 1972 Rev. Mod. Phys. 44 169
[15] Bloch F and Siegert A 1940 Phys. Rev. 57 522
[16] Cates G D, Schaefer S R and Happer W 1998 Phys. Rev. A 37 2877
[17] Budker D, Gawlik W, Kimball D F, Rochester S M, Yashchuk V V and Weis A 2002 Rev. Mod. Phys. 74 1153
[18] Terao A, Ban K, Ichihara S, Mizutani N and Kobayashi T 2013 Phys. Rev. A 88 063413
[1] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[2] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[3] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[4] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[5] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[6] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[9] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[10] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[11] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[12] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
[13] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[14] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[15] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
No Suggested Reading articles found!