Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 074202    DOI: 10.1088/1674-1056/24/7/074202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb

Fang Su (方苏), Jiang Yan-Yi (蒋燕义), Chen Hai-Qin (陈海琴), Yao Yuan (姚远), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生)
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  

A laser at 578 nm is phase-locked to an optical frequency comb (OFC) which is optically referenced to a subhertz-linewidth laser at 1064 nm. Coherence is transferred from 1064 nm to 578 nm via the OFC. By comparing with a cavity-stabilized laser at 578 nm, the absolute linewidth of 1.1 Hz and the fractional frequency instability of 1.3× 10-15 at an averaging time of 1 s for each laser at 578 nm have been determined, which is limited by the performance of the reference laser for the OFC.

Keywords:  coherence transfer      optical frequency comb      narrow linewidth laser  
Received:  16 December 2014      Revised:  01 February 2015      Accepted manuscript online: 
PACS:  42.25.Kb (Coherence)  
  42.60.-v (Laser optical systems: design and operation)  
  42.62.-b (Laser applications)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11334002, 11374102, 11104077, and 11127405) and the National Basic Research Program of China (Grant No. 2012CB821302).

Corresponding Authors:  Jiang Yan-Yi     E-mail:  yyjiang@phy.ecnu.edu.cn

Cite this article: 

Fang Su (方苏), Jiang Yan-Yi (蒋燕义), Chen Hai-Qin (陈海琴), Yao Yuan (姚远), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生) Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb 2015 Chin. Phys. B 24 074202

[1] Diddams S A, Udem Th, Bergquist J C, Curtis E A, Drullinger R E, Hollberg L, Itano W M, Lee W D, Oates C W, Vogel K R and Wineland D J 2001 Science 293 825
[2] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[3] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm Chr and Peik E 2012 Phys. Rev. Lett. 108 090801
[4] Falke St, Schnatz H, Vellore Winfred J S R, Middelmann Th, Vogt St, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U and Lisdat Ch 2011 Metrologia 48 399
[5] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[6] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[7] Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S and Oates C W 2011 Nat. Photon. 5 158
[8] Swallows M D, Martin M J, Bishof M, Benko C, Lin Y, Blatt S, Rey A M and Ye J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 416
[9] Turyshev S G 2009 Phys. Usp. 52 1
[10] Abbott B P 2009 Rep. Prog. Phys. 72 076901
[11] Young B C, Cruz F C, Itano W M and Bergquist J C 1999 Phys. Rev. Lett. 82 3799
[12] Webster S A, Oxborrow M and Gill P 2004 Opt. Lett. 29 1497
[13] Alnis J, Matveev A, Kolachevsky N, Udem Th and Hänsch T W 2008 Phys. Rev. A 77 053809
[14] Thorpe M J, Rippe L, Fortier T M, Kirchner M S and Rosenband T 2011 Nat. Photon. 5 688
[15] Vogt S, Lisdat C, Legero T, Sterr U, Ernsting I, Nevsky A and Schiller S 2011 Appl. Phys. B 104 741
[16] Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L and Ye J 2012 Nat. Photon. 6 687
[17] Hagemann C, Grebing C, Kessler T, Falke S, Lemke N, Lisdat C, Schnatz H, Riehle F and Sterr U 2013 IEEE Trans. Instrum. Meas. 62 1556
[18] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
[19] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805
[20] Newbury N R 2011 Nat. Photon. 5 186
[21] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51
[22] Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y Y, Oates C W and Diddams S A 2011 Nat. Photon. 5 425
[23] Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guéna J, Clairon A, Tobar M E, Bize S, Le Coq Y and Santarelli G 2009 Appl. Phys. Lett. 94 141105
[24] Zhang W, Xu Z, Lours M, Boudot R, Kersale Y, Santarelli G and Le Coq Y 2010 Appl. Phys. Lett. 96 211105
[25] Chen N, Zhou M, Chen H Q, Fang S, Huang L Y, Zhang X H, Gao Q, Jiang Y Y, Bi Z Y, Ma L S and Xu X Y 2013 Chin. Phys. B 22 090601
[26] Fang S, Chen H Q, Wang T Y, Jiang Y Y, Bi Z Y and Ma L S 2013 Appl. Phys. Lett. 102 231118
[27] Chen H Q, Jiang Y Y, Fang S, Bi Z Y and Ma L S 2013 J. Opt. Soc. Am. B 30 1546
[28] Jiang Y Y, Bi Z Y, Robertsson L and Ma L S 2005 Metrologia 42 304
[29] Jones D J, Diddams S A, Taubman M S, Cundiff S T, Ma L S and Hall J L 2000 Opt. Lett. 25 308
[30] Ma L S, Jungner P, Ye J and Hall J L 1994 Opt. Lett. 19 1777
[31] Notcutt M, Ma L S, Ludlow A D, Foreman S M, Ye J and Hall J L 2006 Phys. Rev. A 73 031804
[32] Numata K, Kemery A and Camp J 2004 Phys. Rev. Lett. 93 250602
[33] Kessler T, Legero T and Sterr U 2012 J. Opt. Soc. Am. B 29 178
[34] Nicolodi D, Argence B, Zhang W, Targat R L, Santarelli G and Le Coq Y 2014 Nat. Photon. 8 219
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[3] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[4] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[5] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[6] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[7] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
[8] Photonic generation of RF and microwave signal with relative frequency instability of 10-15
Lu-Lu Yan(闫露露), Wen-Yu Zhao(赵文宇), Yan-Yan Zhang(张颜艳), Zhao-Yang Tai(邰朝阳), Pan Zhang(张攀), Bing-Jie Rao(饶冰洁), Kai Ning(宁凯), Xiao-Fei Zhang(张晓斐), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2018, 27(3): 030601.
[9] Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser
Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044205.
[10] Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation
Hong-Lei Yang(杨宏雷), Hao-Yun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2016, 25(4): 044207.
[11] Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber
Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044208.
[12] A proposal for the generation of optical frequency comb in temperature insensitive microcavity
Xun Lei(雷勋), D an Bian(边丹丹), Shaowu Chen(陈少武). Chin. Phys. B, 2016, 25(11): 114214.
[13] Optical coherence transfer over 50-km spooled fiber with frequency instability of 2×10-17 at 1 s
Ma Chao-Qun (马超群), Wu Li-Fei (吾利飞), Jiang Yan-Yi (蒋燕义), Yu Hong-Fu (于洪浮), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生). Chin. Phys. B, 2015, 24(8): 084209.
[14] Two-photon spectrum of 87Rb using optical frequency comb
Wang Li-Rong (汪丽蓉), Zhang Yi-Chi (张一驰), Xiang Shao-Shan (向少山), Cao Shu-Kai (曹书凯), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(6): 063201.
[15] A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator
Zhang Yan-Yan (张颜艳), Yan Lu-Lu (闫露露), Zhao Wen-Yu (赵文宇), Meng Sen (孟森), Fan Song-Tao (樊松涛), Zhang Long (张龙), Guo Wen-Ge (郭文阁), Zhang Shou-Gang (张首刚), Jiang Hai-Feng (姜海峰). Chin. Phys. B, 2015, 24(6): 064209.
No Suggested Reading articles found!