|
|
Correlation effects on the fine-structure splitting within the 3d9 ground configuration in highly-charged Co-like ions |
Xue-Ling Guo(郭学玲)1,2, Min Huang(黄敏)1,2, Jun Yan(颜君)3,4, Shuang Li(李双)1,2,Kai Wang(王凯)3,4,5, Ran Si(司然)1,2, Chong-Yang Chen(陈重阳)1,2 |
1. Applied Ion Beam Physics Laboratory of Key Laboratory of the Ministry of Education, Fudan University, Shanghai 200433, China; 2. Shanghai EBIT Lab, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China; 3. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 4. Center for Applied Physics and Technology, Peking University, Beijing 100871, China; 5. Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China |
|
|
Abstract A comprehensive theoretical study of correlation effects on the fine-structure splitting within the ground configuration 3d9 of the Co-like Hf45+, Ta46+, W47+, and Au52+ ions is performed by employing the multi-configuration Dirac-Hartree-Fock method in the active space approximation. It shows that the core-valence correlation with the inner-core 2p electron is more significant than with the outer 3p and 3s electrons, and the correlation with the 2s electron is also noticeable. The core-core correlation seems to be small and can be ignored. The calculated 2 D3/2,5/2 splitting energies agree with the recent electron-beam ion-trap measurements [Phys. Rev. A 83 032517 (2011), Eur. Phys. J. D 66 286 (2012)] to within the experimental uncertainties.
|
Received: 24 July 2015
Revised: 31 August 2015
Accepted manuscript online:
|
PACS:
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11076009 and 11374062), the Chinese Association of Atomic and Molecular Data, the Chinese National Fusion Project for ITER (Grant No. 2015GB117000), and the Leading Academic Discipline Project of Shanghai City, China (Grant No. B107). |
Corresponding Authors:
Chong-Yang Chen
E-mail: chychen@fudan.edu.cn
|
Cite this article:
Xue-Ling Guo(郭学玲), Min Huang(黄敏), Jun Yan(颜君), Shuang Li(李双),Kai Wang(王凯), Ran Si(司然), Chong-Yang Chen(陈重阳) Correlation effects on the fine-structure splitting within the 3d9 ground configuration in highly-charged Co-like ions 2016 Chin. Phys. B 25 013101
|
[1] |
Lundqvist M, Nilsson H, Wahlgren G M, Lundberg H, Xu H L, Jang Z K and Leckrone D S 2006 Astron. Astrophys. 450 407
|
[2] |
Fischer U, Pereslavtsev P, Möslang A and Rieth M 2009 J. Nucl. Mater 386 789
|
[3] |
Seely J F, Ekberg J O, Brown C M, Feldman U, Behring W E, Reader J and Richardson M C 1986 Phys. Rev. Lett. 57 2924
|
[4] |
Li B, Higashiguchi T, Otsuka T, Yugami N, Dunne P, Kilbane D, Sokell E and O'ullivan G 2014 J. Phys. B: At., Mol. Opt. Phys. 47 075001
|
[5] |
Fan J Z, Zhang D H, Chang Z W, Shi Y L and Dong C Z 2012 Chin. Phys. Lett 29 073102
|
[6] |
Eidelsberg M, Crifo-Magnant F and Zeippen C J 1981 Astro. Astrophys. Suppl. Ser. 43 455
|
[7] |
Edlén B 1984 Phys. Scr. 5 11
|
[8] |
Kaufman V and Sugar J 1986 J. Phys. Chem. Ref. Data 15 321
|
[9] |
Biémont E and Zeippen C J 1996 Phys. Scr. 1996 192
|
[10] |
Feldman U, Seely J, Landi E and Ralchenko Y 2008 Nucl. Fusion 48 045004
|
[11] |
Fan J Z, Wang Q M, Chang Z W and Dong C Z 2012 Chin. Phys. B 21 063102
|
[12] |
Brown G V, Hansen S B, Träbert E, Beiersdorfer P, Widmann K, Chen H, Chung H K, Clementson J H T, Gu M F and Thorn D B 2008 Phys. Rev. E 77 066406
|
[13] |
Ralchenko Y, Draganic I N, Tan J N, Gillaspy J D, Pomeroy J M, Reader J, Feldman U and Holland G E 2008 J. Phys. B 41 021003
|
[14] |
Kramida A E and Shirai T 2009 At. Data Nucl. Data Tables 95 305
|
[15] |
Träbert E, Clementson J, Beiersdorfer P, Santana J A and Ishikawa Y 2010 Phys. Rev. A 82 062519
|
[16] |
Kramida A 2011 Can. J. Phys. 89 551
|
[17] |
Safronova U I and Safronova A S 2012 J. Phys. B: At. Mol. Opt. Phys. 45 185002
|
[18] |
Kilbane D, O'ullivan G, Gillaspy J D, Ralchenko Y and Reader J 2012 Phys. Rev. 86 042503
|
[19] |
Qiu M L, Zhao R F, Guo X L, Zhao Z Z, Li W X, Du S Y, Xiao J, Yao K, Chen C Y, Hutton R and Zou Y M 2014 J. Phys. B: At., Mol. Opt. Phys. 47 175002
|
[20] |
Zhao R, Grumer J, Li W, Xiao J, Brage T, Huldt S, Hutton R and Zou Y 2014 J. Phys. B: At., Mol. Opt. Phys. 47 185004
|
[21] |
Qiu M L, Li W X, Zhao Z Z, Yang Y, Xiao J, Brage T, Hutton R and Zou Y 2015 J. Phys. B: At., Mol. Opt. Phys. 48 144029
|
[22] |
Zhao Z Z, Qiu M L, Zhao R F, Li W X, Guo X L, Xiao J, Chen C Y, Zou Y M and Hutton R 2015 J. Phys. B: At., Mol. Opt. Phys. 48 115004
|
[23] |
Artemyev A N, Shabaev V M, Tupitsyn I I, Plunien G and Yerokhin V A 2007 Phys. Rev. Lett. 98 173004
|
[24] |
Ralchenko Y, Draganić I N, Osin D, Gillaspy J D and Reader 2011 Phys. Rev. A 83 032517
|
[25] |
Osin D, Gillaspy J, Reader J and Ralchenko Y 2012 Eur. Phys. J. D 66 286
|
[26] |
Gu M F 2003 Astrophys. J. 582 1241
|
[27] |
Gu M F 2008 Can. J. Phys. 86 675
|
[28] |
Quinet P 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195007
|
[29] |
http://www.am.qub.ac.uk/darc/
|
[30] |
Fournier K B 1998 At. Data Nucl. Data Tables 68 1
|
[31] |
Klapisch M 1971 Comput. Phys. Commun. 2 239
|
[32] |
Fischer C F and Gaigalas G 2012 Phys. Rev. A 85 042501
|
[33] |
Guo X L, Huang M, Yan J, Li S, Si R, Li C Y, Chen C Y, Wang Y S and Zou Y M 2015 J. Phys. B: At. Mol. Opt. Phys 48 144020
|
[34] |
Lindgren I 1974 J. Phys. B: At. Mol. Opt. Phys. 7 2441
|
[35] |
Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I 2013 Comput. Phys. Commun. 184 2197
|
[36] |
Jönsson P, He X, Fischer C F and Grant I 2007 Comput. Phys. Comm. 177 597
|
[37] |
Fei Z, Zhao R, Shi Z, Xiao J, Qiu M, Grumer J, Andersson M, Brage T, Hutton R and Zou Y 2012 Phys. Rev. A 86 062501
|
[38] |
Brenner G, López-Urrutia J R C, Harman Z, Mokler P H and Ullrich J 2007 Phys. Rev. A 75 032504
|
[39] |
Hao L H, Jiang G and Hou H J 2010 Phys. Rev. A 81 022502
|
[40] |
Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
|
[41] |
Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) p. 13
|
[42] |
Dyall K 1989 Comput. Phys. Commun. 55 425
|
[43] |
McKenzie B J, Grant I P and Norrington P H 1980 Comput. Phys. Commun 21 233
|
[44] |
Ekman J, Jönsson P, Gustafsson S, Hartman H, Gaigalas G, Godefroid M R and Fischer C F 2014 Astron. Astrophys. 564 24
|
[45] |
Mohr P J 1982 Phys. Rev. A 26 2338
|
[46] |
Olsen J, Roos B O, Jogensen P and Jensen H J A 1988 The Journal of Chemical Physics 89 2185
|
[47] |
Brage T and Fischer C F 1993 Phys. Scr. 47 18
|
[48] |
Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z, Nakamura NKA and Sakoda J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 145004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|