Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 013101    DOI: 10.1088/1674-1056/25/1/013101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Correlation effects on the fine-structure splitting within the 3d9 ground configuration in highly-charged Co-like ions

Xue-Ling Guo(郭学玲)1,2, Min Huang(黄敏)1,2, Jun Yan(颜君)3,4, Shuang Li(李双)1,2,Kai Wang(王凯)3,4,5, Ran Si(司然)1,2, Chong-Yang Chen(陈重阳)1,2
1. Applied Ion Beam Physics Laboratory of Key Laboratory of the Ministry of Education, Fudan University, Shanghai 200433, China;
2. Shanghai EBIT Lab, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China;
3. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4. Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
5. Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  A comprehensive theoretical study of correlation effects on the fine-structure splitting within the ground configuration 3d9 of the Co-like Hf45+, Ta46+, W47+, and Au52+ ions is performed by employing the multi-configuration Dirac-Hartree-Fock method in the active space approximation. It shows that the core-valence correlation with the inner-core 2p electron is more significant than with the outer 3p and 3s electrons, and the correlation with the 2s electron is also noticeable. The core-core correlation seems to be small and can be ignored. The calculated 2 D3/2,5/2 splitting energies agree with the recent electron-beam ion-trap measurements [Phys. Rev. A 83 032517 (2011), Eur. Phys. J. D 66 286 (2012)] to within the experimental uncertainties.
Keywords:  fine-structure splitting      correlation effects      multi-configuration Dirac-Hartree-Fock method      high-Z Co-like ions  
Received:  24 July 2015      Revised:  31 August 2015      Accepted manuscript online: 
PACS:  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11076009 and 11374062), the Chinese Association of Atomic and Molecular Data, the Chinese National Fusion Project for ITER (Grant No. 2015GB117000), and the Leading Academic Discipline Project of Shanghai City, China (Grant No. B107).
Corresponding Authors:  Chong-Yang Chen     E-mail:  chychen@fudan.edu.cn

Cite this article: 

Xue-Ling Guo(郭学玲), Min Huang(黄敏), Jun Yan(颜君), Shuang Li(李双),Kai Wang(王凯), Ran Si(司然), Chong-Yang Chen(陈重阳) Correlation effects on the fine-structure splitting within the 3d9 ground configuration in highly-charged Co-like ions 2016 Chin. Phys. B 25 013101

[1] Lundqvist M, Nilsson H, Wahlgren G M, Lundberg H, Xu H L, Jang Z K and Leckrone D S 2006 Astron. Astrophys. 450 407
[2] Fischer U, Pereslavtsev P, Möslang A and Rieth M 2009 J. Nucl. Mater 386 789
[3] Seely J F, Ekberg J O, Brown C M, Feldman U, Behring W E, Reader J and Richardson M C 1986 Phys. Rev. Lett. 57 2924
[4] Li B, Higashiguchi T, Otsuka T, Yugami N, Dunne P, Kilbane D, Sokell E and O'ullivan G 2014 J. Phys. B: At., Mol. Opt. Phys. 47 075001
[5] Fan J Z, Zhang D H, Chang Z W, Shi Y L and Dong C Z 2012 Chin. Phys. Lett 29 073102
[6] Eidelsberg M, Crifo-Magnant F and Zeippen C J 1981 Astro. Astrophys. Suppl. Ser. 43 455
[7] Edlén B 1984 Phys. Scr. 5 11
[8] Kaufman V and Sugar J 1986 J. Phys. Chem. Ref. Data 15 321
[9] Biémont E and Zeippen C J 1996 Phys. Scr. 1996 192
[10] Feldman U, Seely J, Landi E and Ralchenko Y 2008 Nucl. Fusion 48 045004
[11] Fan J Z, Wang Q M, Chang Z W and Dong C Z 2012 Chin. Phys. B 21 063102
[12] Brown G V, Hansen S B, Träbert E, Beiersdorfer P, Widmann K, Chen H, Chung H K, Clementson J H T, Gu M F and Thorn D B 2008 Phys. Rev. E 77 066406
[13] Ralchenko Y, Draganic I N, Tan J N, Gillaspy J D, Pomeroy J M, Reader J, Feldman U and Holland G E 2008 J. Phys. B 41 021003
[14] Kramida A E and Shirai T 2009 At. Data Nucl. Data Tables 95 305
[15] Träbert E, Clementson J, Beiersdorfer P, Santana J A and Ishikawa Y 2010 Phys. Rev. A 82 062519
[16] Kramida A 2011 Can. J. Phys. 89 551
[17] Safronova U I and Safronova A S 2012 J. Phys. B: At. Mol. Opt. Phys. 45 185002
[18] Kilbane D, O'ullivan G, Gillaspy J D, Ralchenko Y and Reader J 2012 Phys. Rev. 86 042503
[19] Qiu M L, Zhao R F, Guo X L, Zhao Z Z, Li W X, Du S Y, Xiao J, Yao K, Chen C Y, Hutton R and Zou Y M 2014 J. Phys. B: At., Mol. Opt. Phys. 47 175002
[20] Zhao R, Grumer J, Li W, Xiao J, Brage T, Huldt S, Hutton R and Zou Y 2014 J. Phys. B: At., Mol. Opt. Phys. 47 185004
[21] Qiu M L, Li W X, Zhao Z Z, Yang Y, Xiao J, Brage T, Hutton R and Zou Y 2015 J. Phys. B: At., Mol. Opt. Phys. 48 144029
[22] Zhao Z Z, Qiu M L, Zhao R F, Li W X, Guo X L, Xiao J, Chen C Y, Zou Y M and Hutton R 2015 J. Phys. B: At., Mol. Opt. Phys. 48 115004
[23] Artemyev A N, Shabaev V M, Tupitsyn I I, Plunien G and Yerokhin V A 2007 Phys. Rev. Lett. 98 173004
[24] Ralchenko Y, Draganić I N, Osin D, Gillaspy J D and Reader 2011 Phys. Rev. A 83 032517
[25] Osin D, Gillaspy J, Reader J and Ralchenko Y 2012 Eur. Phys. J. D 66 286
[26] Gu M F 2003 Astrophys. J. 582 1241
[27] Gu M F 2008 Can. J. Phys. 86 675
[28] Quinet P 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195007
[29] http://www.am.qub.ac.uk/darc/
[30] Fournier K B 1998 At. Data Nucl. Data Tables 68 1
[31] Klapisch M 1971 Comput. Phys. Commun. 2 239
[32] Fischer C F and Gaigalas G 2012 Phys. Rev. A 85 042501
[33] Guo X L, Huang M, Yan J, Li S, Si R, Li C Y, Chen C Y, Wang Y S and Zou Y M 2015 J. Phys. B: At. Mol. Opt. Phys 48 144020
[34] Lindgren I 1974 J. Phys. B: At. Mol. Opt. Phys. 7 2441
[35] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I 2013 Comput. Phys. Commun. 184 2197
[36] Jönsson P, He X, Fischer C F and Grant I 2007 Comput. Phys. Comm. 177 597
[37] Fei Z, Zhao R, Shi Z, Xiao J, Qiu M, Grumer J, Andersson M, Brage T, Hutton R and Zou Y 2012 Phys. Rev. A 86 062501
[38] Brenner G, López-Urrutia J R C, Harman Z, Mokler P H and Ullrich J 2007 Phys. Rev. A 75 032504
[39] Hao L H, Jiang G and Hou H J 2010 Phys. Rev. A 81 022502
[40] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
[41] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) p. 13
[42] Dyall K 1989 Comput. Phys. Commun. 55 425
[43] McKenzie B J, Grant I P and Norrington P H 1980 Comput. Phys. Commun 21 233
[44] Ekman J, Jönsson P, Gustafsson S, Hartman H, Gaigalas G, Godefroid M R and Fischer C F 2014 Astron. Astrophys. 564 24
[45] Mohr P J 1982 Phys. Rev. A 26 2338
[46] Olsen J, Roos B O, Jogensen P and Jensen H J A 1988 The Journal of Chemical Physics 89 2185
[47] Brage T and Fischer C F 1993 Phys. Scr. 47 18
[48] Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z, Nakamura NKA and Sakoda J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 145004
[1] M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94
Ju Meng(孟举), Wen-Xian Li(李文显), Ji-Guang Li(李冀光), Ze-Qing Wu(吴泽清), Jun Yan(颜君), Yong Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(1): 013101.
[2] Theoretical study on decay of the 4d core-excited states of Cs III
Ding Xiao-Bin(丁晓彬), Dong Chen-Zhong(董晨钟), and Stephan Fritzsche. Chin. Phys. B, 2008, 17(6): 2033-2039.
[3] Excitation and decay dynamics of 1s2s inner-shell double-vacancy states of neon atoms
Ding Xiao-Bin(丁晓彬), Dong Chen-Zhong(董晨钟), Fumihiro Koike, Takako Kato, and Stephan Fritzsche. Chin. Phys. B, 2008, 17(2): 592-598.
[4] Experimental and calculated momentum densities for the complete valence orbitals of the antimicrobial agent diacetyl
Su Guo-Lin (苏国林), Ren Xue-Guang (任雪光), Zhang Shu-Feng (张书锋), Ning Chuan-Gang (宁传刚), Zhou Hui (周晖), Li Bin (李彬), Li Gui-Qin (李桂琴), Deng Jing-Kang (邓景康). Chin. Phys. B, 2005, 14(10): 1966-1973.
No Suggested Reading articles found!