Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 073201    DOI: 10.1088/1674-1056/27/7/073201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer

Xue-Jing Liu(刘学静)1, Ming Ding(丁铭)1, Yang Li(李阳)1, Yan-Hui Hu(胡焱晖)1, Wei Jin(靳伟)2, Jian-Cheng Fang(房建成)1
1 School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
2 Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Abstract  A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation methods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.
Keywords:  spin-exchange relaxation free (SERF) magnetometer      linewidth      optical polarization modulation  
Received:  26 December 2017      Revised:  15 March 2018      Accepted manuscript online: 
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  32.30.Dx (Magnetic resonance spectra)  
  32.60.+i (Zeeman and Stark effects)  
  32.80.Xx (Level crossing and optical pumping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61227902), the National Key R&D Program of China (Grant No. 2017YFB0503100), and the Natural Science Foundation of Beijing Municipality, China (Grant No. 4162038).
Corresponding Authors:  Ming Ding     E-mail:  mingding@buaa.edu.cn

Cite this article: 

Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成) Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer 2018 Chin. Phys. B 27 073201

[1] Brown J M, Smullin S J, Kornack T W and Romalis M V 2010 Phys. Rev. Lett. 105 151604
[2] Savukov I M and Romalis M V 2005 Phys. Rev. Lett. 94 123001
[3] Huang H, Hu X and Dong H 2015 Proc. 47rm th Annual Meeting of the APS Division of Atomic, Molecular & Optical Physics, May 23-26, 2015, Rhode Island, America
[4] Hübner J, Berski F, Dahbashi R and Oestreich M 2014 Phys. Status Solidi B 251 1824
[5] Yuan G, Rongye S and Yanhui W 2014 Acta Phys. Sin. 63 110701 (in Chinese)
[6] Junhai Z, Pingwen W, Yu H, Chong K and Weimin S 2018 Acta Phys. Sin. 67 060701 (in Chinese)
[7] Peixian M, Shiyu Y, Jianxiang W, JiQing L, Jianhui T, Wei Y and Jing Zhong C 2017 Acta Phys. Sin. 66 160701 (in Chinese)
[8] Xia H, Ben-Amar Baranga A, Hoffman D and Romalis M V 2006 Appl. Phys. Lett. 89 211104
[9] Drung D 2002 Phys. C:Supercond. Its Appl. 368 134
[10] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[11] Kim K, Begus S, Xia H, Lee S, Jazbinsek V, Trontelj Z and Romalis M V 2014 Neuroimage 89 143
[12] Grujić Z D and Weis A 2013 Phys. Rev. A 88 012508
[13] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[14] Bell W E and Bloom A L 1957 Phys. Rev. 107 1559
[15] Gilles H, Cheron B and Hamel J 1991 Opt. Commun. 81 369
[16] Kornack T W, Ghosh R K and Romalis M V 2005 Phys. Rev. Lett. 95 230801
[17] Savukov I M and Romalis M V 2005 Phys. Rev. A 71 23405
[18] Seltzer S J and Romalis M V 2004 Appl. Phys. Lett. 85 4804
[19] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[20] Li Z, Ronald T W and Walker G 2006 Appl. Phys. Lett. 89 134105
[1] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[2] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[3] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[4] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[5] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[6] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[7] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[8] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[9] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[10] Cavity linewidth narrowing with dark-state polaritons
Gong-Wei Lin(林功伟), Jie Yang(杨洁), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2016, 25(1): 014201.
[11] Optically pumped quantum MxMR magnetometer with high oscillating magnetic field
Ding Zhi-Chao (丁志超), Yuan Jie (袁杰), Wang Zhi-Guo (汪之国), Yang Kai-Yong (杨开勇), Luo Hui (罗晖). Chin. Phys. B, 2015, 24(8): 083202.
[12] Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb
Fang Su (方苏), Jiang Yan-Yi (蒋燕义), Chen Hai-Qin (陈海琴), Yao Yuan (姚远), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生). Chin. Phys. B, 2015, 24(7): 074202.
[13] Influence of laser linewidth on performance of Brillouin optical time domain reflectometry
Hao Yun-Qi (郝蕴琦), Ye Qing (叶青), Pan Zheng-Qing (潘政清), Cai Hai-Wen (蔡海文), Qu Rong-Hui (瞿荣辉). Chin. Phys. B, 2013, 22(7): 074214.
[14] Linewidth of electromagnetically induced transparency under motional averaging in coated vapor cell
Xu Zhi-Xiang (徐智翔), Qu Wei-Zhi (曲伟智), Gao Ran (高然), Hu Xin-Hua (胡新华), Xiao Yan-Hong (肖艳红). Chin. Phys. B, 2013, 22(3): 033202.
[15] Observation of linewidth narrowing due to a spontaneously generated coherence effect
Tian Si-Cong(田思聪), Wang Chun-Liang(王春亮), Kang Zhi-Hui(康智慧), Yang Xiu-Bin(杨秀彬) Wan Ren-Gang(万仁刚), Zhang Xiao-Jun(张晓军), Zhang Hang(张航), Jiang Yun(姜云), Cui Hai-Ning(崔海宁), and Gao Jin-Yue(高锦岳) . Chin. Phys. B, 2012, 21(6): 064206.
No Suggested Reading articles found!