Please wait a minute...
Chinese Physics, 2001, Vol. 10(9): 779-782    DOI: 10.1088/1009-1963/10/9/301
GENERAL   Next  

COHERENT INFORMATION ON THERMAL RADIATION NOISE CHANNEL: AN APPROACH OF INTEGRAL WITHIN ORDERED PRODUCT OF OPERATORS

Chen Xiao-yu (陈小余)ab, Qiu Pei-liang (仇佩亮)a
a Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; b Division of Physics, China Institute of Metrology, Hangzhou 310034, China
Abstract  An analytical expression is given to the coherent information of the thermal radiation signal transmitted over the thermal radiation noise channel, one of the most essential quantum Gaussian channels. Focusing on the single normal mode of the thermal radiation signal and noise, we resolve the entangled state density operator, which characterizes quantum information transmission, into a direct product of two parts, with each part being a thermal radiation density operator. The calculation is aided by the technique known as "integral within ordered product of operators".
Keywords:  coherent information      exchange information      thermal radiation channel      integral within ordered product of operators  
Received:  16 February 2001      Revised:  19 April 2001      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  05.40.Ca (Noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60002003).

Cite this article: 

Chen Xiao-yu (陈小余), Qiu Pei-liang (仇佩亮) COHERENT INFORMATION ON THERMAL RADIATION NOISE CHANNEL: AN APPROACH OF INTEGRAL WITHIN ORDERED PRODUCT OF OPERATORS 2001 Chinese Physics 10 779

[1] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[5] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[6] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[7] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[8] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[9] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[10] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[11] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[12] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[13] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[14] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[15] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
No Suggested Reading articles found!