Please wait a minute...
Chinese Physics, 2001, Vol. 10(8): 711-715    DOI: 10.1088/1009-1963/10/8/308
GENERAL Prev   Next  

INVERSE SYNCHRONIZATION OF CHAOTIC SYSTEMS IN AN ERBIUM-DOPED FIBRE DUAL-RING LASER USING THE MUTUAL COUPLING METHOD

Wang Rong (王荣), Shen Ke (沈柯)
Department of Optical Physics, Changchun Institute of Optical and Fine Mechanics, Changchun 130022, China
Abstract  Inverse synchronization of chaos is a type of synchronization in which the dynamical variables of two chaotic systems are inversely equal. In this paper, we present a scheme for inverse synchronization of two chaotic systems in an erbium-doped fibre dual-ring laser using the mutual coupling method. For realistic values of the systems, we demonstrate two kinds of results, as follows. (1) Two independent identical chaotic systems can go into inversely synchronized chaotic oscillation for coupling greater than 0.03. (2) When some parameter of one system varies, the state of the coupled systems could go into some periodic states directly or by inverse bifurcation. Simultaneously, they will lose the synchronization as the parameter changes.
Keywords:  chaos synchronization      strange attractor      erbium-doped fibre dual-ring laser  
Received:  06 January 2001      Revised:  06 March 2001      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.By (Design of specific laser systems)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  

Cite this article: 

Wang Rong (王荣), Shen Ke (沈柯) INVERSE SYNCHRONIZATION OF CHAOTIC SYSTEMS IN AN ERBIUM-DOPED FIBRE DUAL-RING LASER USING THE MUTUAL COUPLING METHOD 2001 Chinese Physics 10 711

[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[3] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[4] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[5] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[6] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[7] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[8] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[9] Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal
Giuseppe Grassi . Chin. Phys. B, 2012, 21(6): 060504.
[10] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
[11] Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2012, 21(3): 030502.
[12] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[13] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(8): 080505.
[14] A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization
Mahdi Pourgholi and Vahid Johari Majd . Chin. Phys. B, 2011, 20(12): 120503.
[15] Generalized chaos synchronization of a weighted complex network with different nodes
Lü Ling(吕翎), Li Gang(李钢), Guo Li(郭丽), Meng Le(孟乐),Zou Jia-Rui(邹家蕊), and Yang Ming(杨明). Chin. Phys. B, 2010, 19(8): 080507.
No Suggested Reading articles found!