Please wait a minute...
Chinese Physics, 2001, Vol. 10(8): 708-710    DOI: 10.1088/1009-1963/10/8/307
GENERAL Prev   Next  

A NEW SLIDING MODE CONTROL FOR A CLASS OF UNCERTAIN TIME-DELAY CHAOTIC SYSTEMS

Li Li-xiang (李丽香)a, Peng Hai-peng (彭海朋)a, Guan Bao-zhu (管保柱)a, Xu Jin-ming (徐进明)b 
a Yanshan University, Qinghuangdao 066004, China; b Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract  We propose a new sliding mode control scheme for a class of uncertain time-delay chaotic systems. It is shown that a linear time invariant system with the desired system dynamics is used as a reference model for the output of a time-delay chaotic system to track. A sliding mode controller is then designed to drive the output of the time-delay chaotic system to track the desired linear system. On the sliding mode, the output of the controlled time-delay chaotic system can behave like the desired linear system. A simulation example is given in support of the proposed control scheme.
Keywords:  time-delay chaotic systems      sliding mode control      linear desired system  
Received:  18 December 2000      Revised:  22 March 2001      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. 601226).

Cite this article: 

Li Li-xiang (李丽香), Peng Hai-peng (彭海朋), Guan Bao-zhu (管保柱), Xu Jin-ming (徐进明) A NEW SLIDING MODE CONTROL FOR A CLASS OF UNCERTAIN TIME-DELAY CHAOTIC SYSTEMS 2001 Chinese Physics 10 708

[1] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[2] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[3] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[4] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[5] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[6] Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
Safa Khari, Zahra Rahmani, Behrooz Rezaie. Chin. Phys. B, 2016, 25(5): 050201.
[7] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[8] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang (陈强), Nan Yu-Rong (南余荣), Zheng Heng-Huo (郑恒火), Ren Xue-Mei (任雪梅). Chin. Phys. B, 2015, 24(11): 110504.
[9] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[10] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[11] Synchronization of uncertain fractional-order chaotic systems with disturbance based on fractional terminal sliding mode controller
Wang Dong-Feng (王东风), Zhang Jin-Ying (张金营), Wang Xiao-Yan (王晓燕). Chin. Phys. B, 2013, 22(4): 040507.
[12] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[13] Adaptive projective synchronization of different chaotic systems with nonlinearity inputs
Niu Yu-Jun(牛玉军), Wang Xing-Yuan(王兴元), and Pei Bing-Nan(裴炳南) . Chin. Phys. B, 2012, 21(3): 030503.
[14] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[15] Comparison between two different sliding mode controllers for a fractional-order unified chaotic system
Qi Dong-Lian(齐冬莲), Wang Qiao(王乔), and Yang Jie(杨捷) . Chin. Phys. B, 2011, 20(10): 100505.
No Suggested Reading articles found!