Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100501    DOI: 10.1088/1674-1056/23/10/100501
GENERAL Prev   Next  

Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control

Wang Li-Ming (王立明)a, Tang Yong-Guang (唐永光)a, Chai Yong-Quan (柴永泉)a, Wu Feng (吴峰)b
a Department of Physics, Langfang Teachers College, Langfang 065000, China;
b Department of Physics, Tianjin University of Technology, Tianjin 300191, China
Abstract  An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional-order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can be adaptively adjusted according to the external disturbances. Based on the Lyapunov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simulations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.
Keywords:  generalized projective chaos synchronization      fuzzy sliding mode control      fractional order chaotic system  
Received:  18 October 2013      Revised:  27 April 2014      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the Research Foundation of Education Bureau of Hebei Province, China (Grant No. QN2014096).
Corresponding Authors:  Wang Li-Ming     E-mail:  wlm_shooker@163.com
About author:  05.45.Xt; 05.45.Gg

Cite this article: 

Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰) Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control 2014 Chin. Phys. B 23 100501

[1]Dadras S and Momeni H R 2010 Physica A 389 2434
[2]Ingman D and Suzdalnitsky J 2002 J. Vib. Acoust. 124 642
[3]Koeller R C 2007 Acta Mech. 191 125
[4]Sun H H, Abdelwahab A A and Onaral B 1984 IEEE Trans. Automat. Control 29 441
[5]Ichise M, Nagayanagi Y and Kojima T 1971 J. Electroanal. Chem. 33 253
[6]Bhalekar S and Daftardar-Gejji V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3536
[7]Pan L, Zhou W N, Zhou L and Sun K H 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2628
[8]Song L, Yang J Y and Xu S Y 2010 Nonlinear Anal. 72 2326
[9]Zhou P and Zhu W 2011 Nonlinear Anal. 12 811
[10]Zhou P, Ding R and Cao Y X 2012 Nonlinear Dyn. 70 1263
[11]Peng G J 2007 Phys. Lett. A 363 426
[12]Matouk A E 2011 Commun. Nonlinear. Sci. Numer. Simul. 16 975
[13]Zhang R X and Yang S P 2011 Chin. Phys. B 20 110506
[14]Zhou P and Ding R 2012 Indian J. Phys. 86 497
[15]Odibat Z M 2010 Nonlinear Dyn. 60 479
[16]Xin B G, Chen T and Liu Y Q 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4479
[17]Cafagna D and Grassi G 2012 Nonlinear Dyn. 68 117
[18]Lu J G 2006 Physica A 359 107
[19]Wang X Y, Zhang X P and Ma C 2012 Nonlinear Dyn. 69 511
[20]Liu D and Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese)
[21]Huang L L and Qi X 2013 Acta Phys. Sin. 62 080507(in Chinese)
[22]Wang S and Yu Y G 2012 Chin. Phys. Lett. 29 020505
[23]Zhang R X and Yang S P 2008 Chin. Phys. B 17 4073
[24]Yu Y G and Li H X 2010 Nonlinear Anal. 11 2456
[25]Wu C W, Yang T and Chua L O 1996 Int. J. Bifur. Chaos 6 455
[26]Yang T and Chua L O 1996 IEEE Trans. Circuits Syst. I 43 817
[27]Yang T and Chua L O 1996 Int. J. Bifur. Chaos 6 2653
[28]Yang T, Wu C W and Chua L O 1997 IEEE Trans. Circuits Syst. I 44 469
[29]Li Y, Chen Y Q and Podlubny I 2010 Comput. Math. Appl. 59 1810
[30]Liu J K 2005 Intelligence Control (Beijing: Publishing House of Electronic Industory) (in Chinese)
[31]Toshir T, Kiyoji A and Michio S 1992 Fuzzy Systems Theory and Its Applications (Boston: Academic Press)
[32]Slotine J J E and Li W P 1991 Applied Nonlinear Control (Englewood Cliffs: Prentice-Hall)
[33]Konishi K, Hirai M and Kokame H 1998 Phys. Lett. A 245 511
[34]Deng W H 2007 J. Comput. Phys. 227 1510
[35]Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[36]Li C G, Liao X F and Yu J B 2003 Phys. Rev. E 68 067203
[1] Adaptive lag synchronization and parameter identification of fractional order chaotic systems
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping(杨世平) . Chin. Phys. B, 2011, 20(9): 090512.
[2] Modified impulsive synchronization of fractional order hyperchaotic systems
Fu Jie(浮洁), Yu Miao(余淼), and Ma Tie-Dong(马铁东) . Chin. Phys. B, 2011, 20(12): 120508.
No Suggested Reading articles found!