Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110503    DOI: 10.1088/1674-1056/24/11/110503
GENERAL Prev   Next  

Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling

Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋)
School of Science, Changchun University of Science and Technology, Changchun 130022, China
Abstract  A systematic study of the chaotic synchronization of Bose-Einstein condensed body is performed using linear coupling method based on Lyapunov stability theory, Sylvester’s criterion, and Gerschgorin disc theorem. The chaotic synchronization of Bose-Einstein condensed body in moving optical lattices is realized by linear coupling. The relationship between the synchronization time and coupling coefficient is obtained. Both the single-variable coupling and double-variable coupling are effective. The results of numerical calculation prove that the chaotic synchronization of double-variable coupling is faster than that of single-variable coupling and small coupling coefficient can achieve the chaotic synchronization. Weak noise has little influence on synchronization effect, so the linear coupling technology is suitable for the chaotic synchronization of Bose-Einstein condensate.
Keywords:  Bose-Einstein condensate      linear coupling      chaos synchronization      Lyapunov stability theory  
Received:  16 April 2015      Revised:  06 July 2015      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: Project supported by the Industrial Technology Research and Development Special Project of Jilin Province, China (Grant No. 2013C46) and the Natural Science Foundation of Jilin Province, China (Grant No. 20101510).
Corresponding Authors:  Feng Xiu-Qin     E-mail:  fengxq@cust.edu.cn

Cite this article: 

Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋) Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling 2015 Chin. Phys. B 24 110503

[1] Bradley C C, Sackett C A, Tollett J J and Hulet R G;1995 Phys. Rev. Lett. 75 1687
[2] Esslinger T, Bloch I and Hansch W;1998 Phys. Rev. A 58 R2664
[3] Cornish S L, Claussen N R and Robert J L;2000 Phys. Rev. Lett. 85 1795
[4] Pereira F, Santos D and Leonard J;2001 Phys. Rev. Lett. 86 3459
[5] Wang Y Z, Zhou S Y and Long Q 2003 Chin. Phys. Lett. 20 799
[6] Kuang L M and Ouyang Z W;2000 Phys. Rev. A 61 023604
[7] Jin G J, Wang B B and Lu Y W;2010 Chin. Phys. B 19 020502
[8] Xie Q T, Hai W H and Chong G S;2003 Chaos 13 801
[9] Filho V S, Gammal T and Fredercio;2000 Phys. Rev. A 62 033605
[10] Fang Y C and Yang Z A 2008 Acta Phys. Sin. 57 7438 (in Chinese)
[11] Abdullaev F K and Kraenkel R A;2000 Phys. Rev. A 62 023613
[12] Abdullaev F K and Kraenkel R A;2000 Phys. Rev. A 272 395
[13] Coullet P and Vandenberghe N;2001 Phys. Rev. E 64 25202
[14] Lee C, Hai W H and Shi L;2001 Phys. Rev. A 64 053604
[15] Hai W H, Lee C and Chong G S;2002 Phys. Rev. E 66 026202
[16] Filho V S, Gammal A and Fredercio T;2000 Phys. Rev. A 62 033605
[17] Wang Z X, Zhang X H and Shen K;2008 J. Low. Temp. Phys. 152 136
[18] Wang Z X, Ni Z G, Cong F Z, Liu X S and Chen L;2010 Chin. Phys. B 19 113205
[19] Fang J S and Zhang X P;2008 Commun. Theor. Phys. 50 1355
[20] Fang J S and Zhang X P;2011 Chin. Phys. B 20 040310
[21] Thommen Q, Garreau J C and Zehnl’e V;2003 Phys. Rev. Lett. 91 210405
[22] Pecora L M and Carrloo T L;1990 Phys. Rev. Lett. 64 821
[23] Curran P F and Chua L O;1997 Int. J. Bifurcation Chos 7 1375
[24] Carroll T Lt and Pecora L M;1993 IEEE Trans. Circuits Syst-II 40 646
[25] Kocarev L, Halle K S, Eckert K, Chua L O and Prlitz U;1992 Int. J. Bifurcation Chaos 2 709
[26] Bowong S, Kakmeni F M M and Koina R;2004 Int. J. Bifurcation Chaos 14 2477
[27] Feng X Q, Yao Z H, Tian Z L and Han X Y 2010 Acta Phys. Sin. 59 8414 (in Chinese)
[28] Feng X Q, Li J Y, Yao Z H and Tian Z L;2010 Chaos 20 023120
[29] Feng Y L and Shen K;2008 Chin. Phys. B 17 550
[30] Elabbasy E M, Agiza H N and EL-Dessoky M M;2004 Int. J. Bifurcation Chaos 14 3969
[31] Cai J P, Wang J G, Wu X F and Chen S 2007 Proceedings of the 26th Chinese Control Conference 235
[32] Cai J P, Wu X F and Chen S H;2007 Phys. Scr. 75 379
[33] Billur K;1992 J. Appl. Math. Stoch. Anal. 5 275
[34] Tsay S C, Huang C K and Chiang C T;2004 Chaos 19 935
[35] Wang Z X, Zhang X H and Shen K;2008 J. Exp. Theor. Phys. 107 734
[1] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[8] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[9] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[10] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[11] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[12] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[13] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[14] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[15] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
No Suggested Reading articles found!