Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030502    DOI: 10.1088/1674-1056/21/3/030502
GENERAL Prev   Next  

Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems

Mohammad Pourmahmood Aghababa
Electrical Engineering Department, Urmia University of Technology, Urmia, Iran
Abstract  The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.
Keywords:  finite-time controller      chaos synchronization      non-autonomous centrifugal flywheel governor      chaotic system  
Received:  23 July 2011      Revised:  17 August 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Corresponding Authors:  Mohammad Pourmahmood Aghababa,m.p.aghababa@ee.uut.ac.ir; m.pour13@gmail.com     E-mail:  m.p.aghababa@ee.uut.ac.ir; m.pour13@gmail.com

Cite this article: 

Mohammad Pourmahmood Aghababa Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems 2012 Chin. Phys. B 21 030502

[1] Curran P F and Chua L O 1997 Int. J. Bifurcat. Chaos 7 1357
[2] Pourmahmood M, Khanmohammadi S and Alizadeh G 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2853
[3] Aghababa M P, Khanmohammadi S and Alizadeh G 2011 Appl. Math. Model. 35 3080
[4] L? L, Li G, Guo L, Meng L, Zou J R and Yang M 2010 Chin. Phys. B 19 080507
[5] Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 Chin. Phys. 16 660
[6] Li G H, Zhou S P and Xu D M 2004 Chin. Phys. 13 168
[7] Chen F X and Zhang W D 2007 Chin. Phys. 16 937
[8] Zhang X Y, Guan X P and Li H G 2005 Chin. Phys. B 14 279
[9] Hu J and Zhang Q J 2008 Chin. Phys. B 17 503
[10] Yu W, Chen G and L? J 2009 Automatica 45 429
[11] Yu W, Cao J, Chen G, L? J, Han J and Wei W 2009 IEEE Trans. Syst. Man Cyber. 39 230
[12] Yu W, Cao J and L? J 2008 SIAM J. Appl. Dyn. Syst. 7 108
[13] Zhou J, Lu J and L? J 2008 Automatica 44 996
[14] Zhang Q, Lu J, L? J and Tse C K 2008 IEEE Trans. Circuit. Syst. 55 183
[15] Zhou J, Lu J and L? J 2006 IEEE Trans. Automatic Control 51 652
[16] L? J and Chen G 2005 IEEE Trans. Automatic Control 50 841
[17] Aghababa M P 2011 Chin. Phys. B 20 090505
[18] Chen Y, Wu X and Gui Z 2010 Appl. Math. Model. 34 4161
[19] Yang T and Chua L O 2000 Int. J. Bifurcat. Chaos 15 859
[20] Salarieh H and Alasty A 2008 J. Sound Vibr. 313 760
[21] Cai J P, Wu X F and Chen S H 2007 Phys. Scripta 75 379
[22] Yoo W, Ji D and Won S 2010 Phys. Lett. A 374 1354
[23] Chen Y, Wu X and Liu Z 2009 Chaos Soliton. Fract. 42 1197
[24] Beltrami E 1987 Mathematics for Dynamic Modeling (Academic Press: Boston)
[25] Abno S and Hata Y 1981 Microprocess. Microsys. 5 451
[26] Ge Z M, Yang H S, Chen H H and Chen H K 1999 Int. J. Eng. Sci. 37 921
[27] Zhang J G, Li X F, Chu Y D, Yu J N and Chang Y X 2009 Chaos Soliton. Fract. 39 2150
[28] Zhang J G, Yu J N, Chu Y D, Li X F and Chang Y X 2008 Simulat. Model. Pract. Theory 16 1588
[29] Sotomayor J, Mello L F and Braga D C 2008 Nonlinear Anal. RWA 9 889
[30] Ge Z M and Jhuang W R 2007 Chaos Soliton. Fract. 33 270
[31] Ge Z M and Lee C I 2003 J. Sound Vibr. 262 845
[32] Ge Z M and Lee C I 2005 J. Sound Vibr. 282 635
[33] Ge Z M and Lee C I 2005 Chaos Soliton. Fract. 23 1855
[34] Zhang H, Huang W, Wang Z and Chai T 2006 Phys. Lett. A 350 363
[35] L? J, Han F, Yu X and Chen G 2004 Automatica 40 1677
[36] L? J, Chen G, Yu X and Leung H 2004 IEEE Trans. Circuit. Syst. 51 2476
[37] Yu S, L? J, Leung H and Chen G 2005 IEEE Trans. Circuit. Syst. 52 1459
[38] L? J and Chen G 2006 Int. J. Bifurcat. Chaos 16 775
[39] L? J, Yu S, Leung H and Chen G 2006 IEEE Trans. Circuit. Syst. 53 149
[40] Yu S, L? J and Chen G 2007 IEEE Trans. Circuit. Syst. 54 2087
[41] Wang H, Han Z Z, Xie Q Y and Zhang W 2009 Nonlinear Anal. RWA 10 2842
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[6] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[7] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[8] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[9] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[10] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[11] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[12] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[13] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[14] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[15] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
No Suggested Reading articles found!