Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100506    DOI: 10.1088/1674-1056/22/10/100506
GENERAL Prev   Next  

Chaos synchronization of a chain network based on a sliding mode control

Liu Shuang (柳爽)a, Chen Li-Qun (陈立群)a b c
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
b Department of Mechanics, Shanghai University, Shanghai 200444, China;
c Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Abstract  A sliding mode control approach is proposed to implement the synchronization of the chain tree network. The double-scroll circuit chaos systems are treated as nodes and the network is constructed with the state variable coupling. By selecting a switching sliding surface, the chaos synchronization of the network is achieved with one control input only. The stability analysis and the numerical simulations demonstrate that the complete synchronization in a chain network can be realized for all nodes.
Keywords:  chaos synchronization      sliding mode control      Lyapunov stability      double-scroll circuit  
Received:  24 March 2013      Revised:  13 April 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 11232009) and the Shanghai Leading Academic Discipline Project, China (Grant No. S30106).
Corresponding Authors:  Chen Li-Qun     E-mail:  lqchen@straff.shu.edu.cn

Cite this article: 

Liu Shuang (柳爽), Chen Li-Qun (陈立群) Chaos synchronization of a chain network based on a sliding mode control 2013 Chin. Phys. B 22 100506

[1] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[2] Estrada E, Hatanoe N and Benzi M 2012 Phys. Rep. 514 89
[3] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[4] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[5] Strogatz S H 2001 Nature 410 268
[6] Sorrentino F and Ott E 2008 Phys. Rev. Lett. 100 114101
[7] Chai Y, Lü L and Chen L Q 2012 Chin. Phys. B 21 030506
[8] Yu Y G and Zhang S C 2005 Chaos, Solitons and Fractals 24 1233
[9] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[10] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1
[11] Utkin V 1977 IEEE Trans. Autom. Control 22 212
[12] Utkin V 1993 IEEE Trans. Ind. Electron. 40 23
[13] Chen P C, Chen C W and Chiang W L 2009 Expert Systems with Applications 36 5872
[14] Farivar F, Shoorehdeli M A, Nekoui M A and Teshnehlab M 2011 Expert Systems with Applications 38 4714
[15] Lü L, Li Y S, Wei L L, Yu M and Zhang M 2012 Acta Phys. Sin. 61 120504 (in Chinese)
[16] Hu Q L 2008 Nonlinear Dyn. 52 227
[17] Wang C C and Yau H T 2011 Nonlinear Dyn. 66 53
[18] Roopaei M, Sahraei B R and Lin T C 2010 Commun. Nonlinear Sci. Numer. Simul. 15 4158
[19] Li Y, Liu Z R and Zhang J B 2008 Chin. Phys. Lett. 25 874
[20] Sun Z Q, Xie P, Li W and Wang P Y 2010 Chin. Phys. Lett. 27 088702
[21] Sun F Y 2006 Chin. Phys. Lett. 23 32
[22] Chen S H, Liu J, Xie J and Lu J A 2002 Chin. Phys. 11 233
[23] Yang J Z and Zhang M 2005 Chin. Phys. Lett. 22 2183
[24] Han C Z and Li Z 2002 Chin. Phys. 11 9
[25] Chen L Q 2002 Chin. Phys. 11 900
[26] Li Z and Han C Z 2002 Chin. Phys. 11 666
[27] Mu J, Tao C and Du G H 2003 Chin. Phys. 12 381
[28] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[29] Lu J, Yu X, Chen G and Cheng D 2004 IEEE Trans. Circ. Syst. I 51 787
[30] Eggarter T P 1974 Phys. Rev. B 9 2989
[31] Matsumoto T, Chua L and Komuro M 1985 IEEE Trans. Circ. Syst. I 32 797
[32] Turci L F R and Macau E E N 2011 Phys. Rev. E 84 011120
[33] Kyprianidis I M, Volos C K, Stavrinides S G, Stouboulos I N and Anagnostopoulos A N 2010 J. Eng. Sci. Technol. Rev. 3 41
[34] Li Y S, Lü L, Liu Y, Liu S, Yan B, Chang H and Zhou J N 2013 Acta Phys. Sin. 62 020513 (in Chinese)
[35] Lü L, Yu M, Wei L L, Zhang M and Li Y S 2012 Chin. Phys. B 21 100507
[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[3] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[4] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[5] Intra-layer synchronization in duplex networks
Jie Shen(沈洁), Longkun Tang(汤龙坤). Chin. Phys. B, 2018, 27(10): 100503.
[6] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[7] Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor—actuator networks
Jian-Zhong Zhang(张建中), Bao-Tong Cui(崔宝同), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(9): 090201.
[8] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[9] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[10] Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
Safa Khari, Zahra Rahmani, Behrooz Rezaie. Chin. Phys. B, 2016, 25(5): 050201.
[11] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[12] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[13] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[14] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang (陈强), Nan Yu-Rong (南余荣), Zheng Heng-Huo (郑恒火), Ren Xue-Mei (任雪梅). Chin. Phys. B, 2015, 24(11): 110504.
[15] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
No Suggested Reading articles found!