Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060504    DOI: 10.1088/1674-1056/21/6/060504
GENERAL Prev   Next  

Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal

Giuseppe Grassi
Dipartimento Ingegneria Innovazione Università del Salento - 73100 Lecce-Italy
Abstract  In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchronizes with a linear combination of response system states. The proposed observer-based approach presents some useful features: i) it enables {exact} synchronization to be achieved in finite time (i.e., {dead-beat} synchronization); ii) it exploits a {scalar} synchronizing signal; iii) it can be applied to a {wide} class of discrete-time chaotic (hyperchaotic) systems; iv) it includes, as a particular case, most of the synchronization types defined so far. An example is reported, which shows in detail that exact synchronization is effectively achieved in finite time, using a scalar synchronizing signal only, for any arbitrary scaling matrix.
Keywords:  chaos synchronization      full-state hybrid projective synchronization      observer-based synchronization      chaotic discrete-time systems      dead beat control      attractor scaling  
Received:  06 September 2011      Revised:  12 October 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Giuseppe Grassi     E-mail:  giuseppe.grassi@unisalento.it

Cite this article: 

Giuseppe Grassi Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal 2012 Chin. Phys. B 21 060504

[1] Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)
[2] Chen G and Ueta T (eds) 2002 Chaos in Circuits and Systems (Singapore: World Scientific)
[3] Grassi G 2008 Chin. Phys. B 17 3247
[4] Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Sys. 38 453
[5] Mascolo S and Grassi G 1997 Phys. Rev. E 56 6166
[6] Wei W, Li D H and Wang J 2010 Chin. Phys. B 19 040507
[7] Brucoli M, Carnimeo L and Grassi G 1996 Int. J. Bifur. Chaos 6 1673
[8] Grassi G and Mascolo S 1997 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 44 1011
[9] Grassi G and Mascolo S 1998 IEE Electron. Lett. 34 424
[10] Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 46 1135
[11] Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. II: Analog and Digital Signal Proc. 46 478
[12] Miller D A and Grassi G 2001 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 48 366
[13] Grassi G and Miller D A 2002 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 49 373
[14] An H L and Chen Y 2008 Chin. Phys. B 17 98
[15] Zhang R and Xu Z Y 2010 Chin. Phys. B 19 120511
[16] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[17] Chee C Y and Xu D 2003 Phys. Lett. A 318 112
[18] Xu D 2001 Phys. Rev. E 63 027201
[19] Xu D and Chee C Y 2002 Phys. Rev. E 66 046218
[20] Grassi G and Miller D A 2009 Chaos, Solitons & Fractals 39 1246
[21] Grassi G and Miller D A 2007 Int. J. Bifur. Chaos 17 1337
[22] Niu Y J, Wang X Y, Nian F Z and Wang M J 2010 Chin. Phys. B 19 120507
[23] Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 365 315
[24] Lu J and Zhang Q 2008 Phys. Lett. A 372 1416
[25] Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 361 231
[26] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 456
[27] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 782
[28] Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507
[29] Grassi G 2010 J. Franklin Institute 347 438
[30] Elhadj Z and Sprott J C 2009 Int. J. Bifur. Chaos 19 1023
[31] Dorf R C and Bishop R H 2005 Modern Control Systems (Prentice Hall, Upper Saddle River: NJ)
[32] Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circ. Sys. 33 1073
[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[3] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[4] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[5] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[6] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[7] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[8] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[9] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
[10] Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2012, 21(3): 030502.
[11] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[12] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(8): 080505.
[13] A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization
Mahdi Pourgholi and Vahid Johari Majd . Chin. Phys. B, 2011, 20(12): 120503.
[14] Generalized chaos synchronization of a weighted complex network with different nodes
Lü Ling(吕翎), Li Gang(李钢), Guo Li(郭丽), Meng Le(孟乐),Zou Jia-Rui(邹家蕊), and Yang Ming(杨明). Chin. Phys. B, 2010, 19(8): 080507.
[15] Asymptotical p-moment stability of stochastic impulsive differential system and its application to chaos synchronization
Niu Yu-Jun(牛玉俊), Xu Wei(徐伟), and Lu Zhao-Yang(陆朝阳). Chin. Phys. B, 2010, 19(3): 030512.
No Suggested Reading articles found!