|
|
Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal |
Giuseppe Grassi† |
Dipartimento Ingegneria Innovazione Università del Salento - 73100 Lecce-Italy |
|
|
Abstract In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchronizes with a linear combination of response system states. The proposed observer-based approach presents some useful features: i) it enables {exact} synchronization to be achieved in finite time (i.e., {dead-beat} synchronization); ii) it exploits a {scalar} synchronizing signal; iii) it can be applied to a {wide} class of discrete-time chaotic (hyperchaotic) systems; iv) it includes, as a particular case, most of the synchronization types defined so far. An example is reported, which shows in detail that exact synchronization is effectively achieved in finite time, using a scalar synchronizing signal only, for any arbitrary scaling matrix.
|
Received: 06 September 2011
Revised: 12 October 2011
Accepted manuscript online:
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
Corresponding Authors:
Giuseppe Grassi
E-mail: giuseppe.grassi@unisalento.it
|
Cite this article:
Giuseppe Grassi Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal 2012 Chin. Phys. B 21 060504
|
[1] |
Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)
|
[2] |
Chen G and Ueta T (eds) 2002 Chaos in Circuits and Systems (Singapore: World Scientific)
|
[3] |
Grassi G 2008 Chin. Phys. B 17 3247
|
[4] |
Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Sys. 38 453
|
[5] |
Mascolo S and Grassi G 1997 Phys. Rev. E 56 6166
|
[6] |
Wei W, Li D H and Wang J 2010 Chin. Phys. B 19 040507
|
[7] |
Brucoli M, Carnimeo L and Grassi G 1996 Int. J. Bifur. Chaos 6 1673
|
[8] |
Grassi G and Mascolo S 1997 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 44 1011
|
[9] |
Grassi G and Mascolo S 1998 IEE Electron. Lett. 34 424
|
[10] |
Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 46 1135
|
[11] |
Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. II: Analog and Digital Signal Proc. 46 478
|
[12] |
Miller D A and Grassi G 2001 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 48 366
|
[13] |
Grassi G and Miller D A 2002 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 49 373
|
[14] |
An H L and Chen Y 2008 Chin. Phys. B 17 98
|
[15] |
Zhang R and Xu Z Y 2010 Chin. Phys. B 19 120511
|
[16] |
Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
|
[17] |
Chee C Y and Xu D 2003 Phys. Lett. A 318 112
|
[18] |
Xu D 2001 Phys. Rev. E 63 027201
|
[19] |
Xu D and Chee C Y 2002 Phys. Rev. E 66 046218
|
[20] |
Grassi G and Miller D A 2009 Chaos, Solitons & Fractals 39 1246
|
[21] |
Grassi G and Miller D A 2007 Int. J. Bifur. Chaos 17 1337
|
[22] |
Niu Y J, Wang X Y, Nian F Z and Wang M J 2010 Chin. Phys. B 19 120507
|
[23] |
Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 365 315
|
[24] |
Lu J and Zhang Q 2008 Phys. Lett. A 372 1416
|
[25] |
Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 361 231
|
[26] |
Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 456
|
[27] |
Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 782
|
[28] |
Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507
|
[29] |
Grassi G 2010 J. Franklin Institute 347 438
|
[30] |
Elhadj Z and Sprott J C 2009 Int. J. Bifur. Chaos 19 1023
|
[31] |
Dorf R C and Bishop R H 2005 Modern Control Systems (Prentice Hall, Upper Saddle River: NJ)
|
[32] |
Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circ. Sys. 33 1073
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|