Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050505    DOI: 10.1088/1674-1056/21/5/050505
GENERAL Prev   Next  

Generalized synchronization between different chaotic maps via dead-beat control

Grassi G
Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce 73100, Italy
Abstract  This paper presents a new scheme to achieve generalized synchronization (GS) between different discrete-time chaotic (hyperchaotic) systems. The approach is based on a theorem, which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied. The method presents some useful features:it enables exact GS to be achieved in finite time (i.e., dead-beat synchronization); it is rigorous, systematic, and straightforward in checking GS; it can be applied to a wide class of chaotic maps. Some examples of GS, including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map, are illustrated.
Keywords:  generalized synchronization      chaos synchronization      discrete-time chaotic systems      dead-beat control      chaotic maps  
Received:  15 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  

Cite this article: 

Grassi G Generalized synchronization between different chaotic maps via dead-beat control 2012 Chin. Phys. B 21 050505

[1] Chen G and Ueta T (eds) 2002 Chaos in Circuits and Systems (Singapore:World Scientific Publishing Co.) p. 1
[2] Grassi G 2008 Chin. Phys. B 17 3247
[3] Carroll T L and Pecora L M 1990 Phys. Rev. Lett. 64 821
[4] Brucoli M, Carnimeo L and Grassi G 1996 Int. J. Bifurcat. Chaos 6 1673
[5] Grassi G and Mascolo S 1997 IEEE T. Circ. Syst. I 44 1011
[6] Mascolo S and Grassi G 1997 Phys. Rev. E 56 6166
[7] Grassi G and Mascolo S 1998 IEE Electron. Lett. 34 424
[8] Brucoli M, Cafagna D, Carnimeo L and Grassi G 1998 Int. J. Bifurcat. Chaos 8 2031
[9] Grassi G and Mascolo S 1999 IEEE T. Circ. Syst. I 46 1135
[10] Grassi G and Mascolo S 1999 IEEE T. Circ. Syst. II 46 478
[11] Miller D A and Grassi G 2001 IEEE T. Circ. Syst. I 48 366
[12] Grassi G and Miller D A 2002 IEEE T. Circ. Syst. I 49 373
[13] Sang J Y, Yang J and Yue L J 2011 Chin.Phys. B 20 080507
[14] Grassi G and Miller D A 2007 Int. J. Bifurcat. Chaos 17 1337
[15] Zhang R and Xu Z Y 2010 Chin. Phys. B 19 120511
[16] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simulat. 13 782
[17] Grassi G and Miller D A 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1824
[18] Rulkov N F, Sushchik M M, Tsimring L S and Abarbanel H D I 1995 Phys. Rev. E 51 980
[19] Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 76 1816
[20] Abarbanel H D I, Rulkov N F and Sushchik M M 1996 Phys. Rev. E 53 4528
[21] Ho M C and Hung Y C 2002 Phys. Lett. A 301 424
[22] Li G H 2007 Chin. Phys. 16 2608
[23] Li G H 2009 Chaos Soliton. Fract. 39 2056
[24] Niu Y J, Wang X Y, Nian F Z and Wang M J 2010 Chin. Phys. B 19 120507-1
[25] Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507-1
[26] Rulkov N F, Afraimovich V S, Lewis C T, Chazottes J R and Cordonet A 2001 Phys. Rev. E 64 016217
[27] So P, Barreto E, Josic K, Sander E and Schiff S J 2002 Phys. Rev. E 65 046225
[28] Hramov A E and Koronovskii A A 2005 Phys. Rev. E 71 067201
[29] Jing J Y and Min L Q 2009 Commun. Theor. Phys. 51 1149
[30] Yuan Z, Xu Z and Guo L 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 992
[31] Zeraoulia E and Sprott J C 2008 Int. J. Bifurcat. Chaos 18 1567
[32] Grassi G 2010 J. Fraklin I. 347 438
[33] Zeraoulia E and Sprott J C 2009 Int. J. Bifurcat. Chaos 19 1023
[34] Dorf R C and Bishop R H 2005 Modern Control Systems (Upper Saddle River:Prentice Hall) p. 69
[35] Grassi G and Miller D A 2009 Chaos Soliton. Fract. 39 1246
[36] Afraimovich V S, Cordonet A and Rulkov N F 2002 Phys. Rev. E 66 016208
[37] Baier G and Klein M 1990 Phys. Lett. A 151 281
[38] Yang X S and Chen G 2002 Chaos Soliton. Fract. 13 1303
[39] Lu J 2008 Commun. Nonlinear Sci. Numer. Simulat. 13 1851
[40] Ji Y, Liu T and Min L 2008 Phys. Lett. A 372 3645
[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[3] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[4] An efficient three-party password-based key agreement protocol using extended chaotic maps
Shu Jian (舒剑). Chin. Phys. B, 2015, 24(6): 060509.
[5] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[6] Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords
Xie Qi (谢琪), Hu Bin (胡斌), Chen Ke-Fei (陈克非), Liu Wen-Hao (刘文浩), Tan Xiao (谭肖). Chin. Phys. B, 2015, 24(11): 110505.
[7] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[8] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[9] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[10] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[11] Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal
Giuseppe Grassi . Chin. Phys. B, 2012, 21(6): 060504.
[12] Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2012, 21(3): 030502.
[13] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[14] Hölder continuity of generalized chaos synchronization in complex networks
Hu Ai-Hua(胡爱花), Xu Zhen-Yuan(徐振源), and Guo Liu-Xiao(过榴晓) . Chin. Phys. B, 2011, 20(9): 090511.
[15] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(8): 080505.
No Suggested Reading articles found!