Abstract Newly developed nanostructured Zr/Ti-Al-TM multiphase alloys can provide a large bandwidth of interesting properties, such as mechanical properties. Bulk materials with nanocrystalline/ amorphous and (nano)quasicrystalline/ amorphous microstructure with different volume fractions of nanophases and with different grain sizes can be obtained by slowly cooling the melt as well as by solid state reactions. Multiphase structures are realized either by partial de-vitrification of bulk glass-forming alloys or by defined addition of inert compounds upon alloying. Special preparation techniques e.g. copper mould casting and subsequent controlled annealing and mechanical alloying combined with hot consolidation of powders are described. The phase formation and transformation processes and the thermal stability of such materials in dependence on alloy composition and processing parameters are discussed in detail. Currently, the exploration of properties with respect to potential applications of these nanostructured alloys is still at the beginning. First investigations on the contributions of different phases/ volume fractions to the overall mechanical behaviour will be shown. At room temperature, the deformation behaviour of amorphous/crystalline bulk samples is governed by contributions of all existing phases yielding a high strength of the material.
Received: 30 March 2001
Accepted manuscript online:
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.