Please wait a minute...
Chinese Physics, 2001, Vol. 10(13): 40-44    DOI:
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

NANOSTRUCTURED Zr-BASED ALLOYS-PHASE FORMATION AND MECHANICAL PROPERTIES

A. Gebert, J. Eckert, U. Kühn, A. Reger-Leonhard
IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden, Germany
Abstract  Newly developed nanostructured Zr/Ti-Al-TM multiphase alloys can provide a large bandwidth of interesting properties, such as mechanical properties. Bulk materials with nanocrystalline/ amorphous and (nano)quasicrystalline/ amorphous microstructure with different volume fractions of nanophases and with different grain sizes can be obtained by slowly cooling the melt as well as by solid state reactions. Multiphase structures are realized either by partial de-vitrification of bulk glass-forming alloys or by defined addition of inert compounds upon alloying. Special preparation techniques e.g. copper mould casting and subsequent controlled annealing and mechanical alloying combined with hot consolidation of powders are described. The phase formation and transformation processes and the thermal stability of such materials in dependence on alloy composition and processing parameters are discussed in detail. Currently, the exploration of properties with respect to potential applications of these nanostructured alloys is still at the beginning. First investigations on the contributions of different phases/ volume fractions to the overall mechanical behaviour will be shown. At room temperature, the deformation behaviour of amorphous/crystalline bulk samples is governed by contributions of all existing phases yielding a high strength of the material.
Keywords:  metallic glasses      nanoscale systems fabrication      mechanical properties      mechanical alloying  
Received:  30 March 2001      Accepted manuscript online: 
PACS:  8120Q  
  8130D  
  6220  
  8140L  

Cite this article: 

A. Gebert, J. Eckert, U. Kühn, A. Reger-Leonhard NANOSTRUCTURED Zr-BASED ALLOYS-PHASE FORMATION AND MECHANICAL PROPERTIES 2001 Chinese Physics 10 40

[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[6] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[7] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[8] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[9] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[10] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[11] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[12] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[13] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[14] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[15] Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝). Chin. Phys. B, 2019, 28(4): 046103.
No Suggested Reading articles found!