Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1993, Vol. 2(8): 619-629    DOI: 10.1088/1004-423X/2/8/008
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

FRANZ-KELDYSH OSCILLATION FROM THE SPACE CHARGE REGION OF MBE GaAs FILMS

PAN SHI-HONG (潘士宏)a, WANG ZHONG-HE (王忠和)a, LIU YI (刘毅)a, ZHANG CUN-ZHOU (张存洲)a, ZHOU XIAO-CHUAN (周小川)b, JIANG JIAN (蒋健)b, XU GUI-CHANG (徐贵昌)b
a Department of Physics, Nankai University Tianjin 300071, China; b Laboratory for Surface Physics, Academia Sinica, Beijing 100080, China
Abstract  We have investigated doped MBE GaAs films using photoreflectance (PR) spec-troscopy. Special spectral structures have been observed in the vicinity of the funda-mental band gap, which are quite different from the Franz-Keldysh oscillation (FKO) from uniform electric fields under flatband modulations. Numerical analysis has been performed for FKO from electric fields in the space charge region under non-flatband modulations. Some typical FKO line shapes are illustrated. For moderately doped samples the calculated line shapes are basically consistent with experiments. The surface electric field and the Fermi level pinning have also been deduced from exper-iments.
Received:  12 October 1992      Accepted manuscript online: 
PACS:  78.66.Fd (III-V semiconductors)  
  71.20.Nr (Semiconductor compounds)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported in part by the National Laboratory of Semiconductor Supaerlattices.

Cite this article: 

PAN SHI-HONG (潘士宏), WANG ZHONG-HE (王忠和), LIU YI (刘毅), ZHANG CUN-ZHOU (张存洲), ZHOU XIAO-CHUAN (周小川), JIANG JIAN (蒋健), XU GUI-CHANG (徐贵昌) FRANZ-KELDYSH OSCILLATION FROM THE SPACE CHARGE REGION OF MBE GaAs FILMS 1993 Acta Physica Sinica (Overseas Edition) 2 619

[1] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[2] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[3] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[4] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[5] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[6] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[7] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[8] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[9] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[10] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[11] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[12] Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow
Bin Li(黎斌), Shan-Jin Huang(黄善津), Hai-Long Wang(王海龙), Hua-Long Wu(吴华龙), Zhi-Sheng Wu(吴志盛), Gang Wang(王钢), Hao Jiang(江灏). Chin. Phys. B, 2017, 26(8): 087307.
[13] Analysis of localization effect in blue-violet light emitting InGaN/GaN multiple quantum wells with different well widths
Xiang Li(李翔), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Wei Liu(刘炜), Xiao-Guang He(何晓光), Xiao-Jing Li(李晓静), Feng Liang(梁锋), Jian-Ping Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同), Heng Long(龙衡), Mo Li(李沫). Chin. Phys. B, 2017, 26(1): 017805.
[14] Effects of multiple interruptions with trimethylindium-treatment in the InGaN/GaN quantum well on green light emitting diodes
Liang Qiao(乔良), Zi-Guang Ma(马紫光), Hong Chen(陈弘), Hai-Yan Wu(吴海燕), Xue-Fang Chen(陈雪芳), Hao-Jun Yang(杨浩军), Bin Zhao(赵斌), Miao He(何苗), Shu-Wen Zheng(郑树文), Shu-Ti Li(李述体). Chin. Phys. B, 2016, 25(10): 107803.
[15] Exciton-phonon interaction in Al0.4Ga0.6N/Al0.53Ga0.47N multiple quantum wells
Ya-Li Liu(刘雅丽), Peng Jin(金鹏), Gui-Peng Liu(刘贵鹏), Wei-Ying Wang(王维颖), Zhi-Qiang Qi(齐志强), Chang-Qing Chen(陈长清), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 087801.
No Suggested Reading articles found!