1 Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; 3 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract The exciton-phonon interaction in Al0.4Ga0.6N/Al0.53Ga0.47N multiple quantum wells (MQWs) is studied by deep-ultraviolet time-integrated and time-resolved photoluminescence (PL). Up to four longitudinal-optical (LO) phonon replicas of exciton recombination are observed, indicating the strong coupling of excitons with LO phonons in the MQWs. Moreover, the exciton-phonon coupling strength in the MQWs is quantified by the Huang-Rhys factor, and it keeps almost constant in a temperature range from 10 K to 120 K. This result can be explained in terms of effects of fluctuations in the well thickness in the MQWs and the temperature on the exciton-phonon interaction.
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB619306), the Beijing Science and Technology Project, China (Grant No. Z151100003315024), and the National Natural Science Foundation of China (Grant No. 61404132).
Corresponding Authors:
Peng Jin
E-mail: pengjin@semi.ac.cn
Yin J, Li Y, Chen S C, Li J, Kang J Y, Li W, Jin P, Chen Y H, Wu Z H, Dai J N, Fang Y Y and Chen C Q 2014 Adv. Opt. Mater. 2 451
[2]
Shatalov M, SunW, Jain R, Lunev A, Hu X, Dobrinsky A, Bilenko Y, Yang J, Garrett G A, Rodak L E, Wraback M, Shur M and Gaska R 2014 Semicond. Sci. Technol. 29 084007
[3]
Pozina G, Hemmingsson C, Amano H and Monemar 2013 Appl. Phys. Lett. 102 082110
[4]
Aoki Y, Kuwabara M, Yamashita Y, Takagi Y, Sugiyama A and Yoshida H 2015 Appl. Phys. Lett. 107 151103
[5]
Yamashita Y, Kuwabara M, Torii K and Yoshida H 2013 Opt. Express 21 3133
[6]
Brummer G, Nothern D, Nikiforov A Y and Moustakas T D 2015 Appl. Phys. Lett. 106 221107
[7]
Wang W Y, Jin P, Liu G P, Li W, Liu B, Liu X F and Wang Z G 2014 Chin. Phys. B 23 087810
[8]
Zhang X B, Taliercio T, Kolliakos S and Lefebvre P 2001 J. Phys.:Condens. Matter 13 7053
[9]
Sedhain A, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 95 061106
[10]
Liu W, Li M F, Xu S J, Uchidax K and Matsumotok K 1998 Semicond. Sci. Technol. 13 769
[11]
Smith M, Lin J Y, Jiang H X, Khan A, Chen Q, Salvador A, Botchkarev A, Kim W and Morkoc H 1997 Appl. Phys. Lett. 70 2882
[12]
Kovalev D, Averboukh B, Volm D, Meyer B K, Amano H and Akasaki I 1996 Phys. Rev. B 54 2518
[13]
Smith M, Lin J Y, Jiang H X, Salvador A, Botchkarev A, Kim W and Morkoc H 1996 Appl. Phys. Lett. 69 2453
[14]
Fan S F, Qin Z X, He C G, Hou M J, Wang X Q, Shen B, Li W, Wang W Y, Mao D F, Jin P, Yan J C and Dong P 2013 Opt. Express 21 24497
[15]
Cho Y H, Gainer G H, Lam J B, Song J J, Yang W and Jhe W 2000 Phys. Rev. B 61 7203
[16]
Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M and Yang H 2001 Appl. Phys. Lett. 79 1810
[17]
Wang W Y, Liu G P, Jin P, Mao D F, Li W, Wang Z G, Tian W and Chen C Q 2014 Chin. Phys. B 23 117803
[18]
Hu X L, Zhang J Y, Shang J Z, Liu W J and Zhang B P 2010 Chin. Phys. B 19 117801
[19]
Gallart M, Lefebvre P, Morel A, Taliercio T, Gil B, All'egre J, Mathieu H, Damilano B, Grandjean N and Massies J 2001 Phys. Stat. Sol. 183 61
[20]
Mickevičius J, Tamulaitis G, Kuokštis E, Liu K, Shur M S, Zhang J P and Gaska R 2007 Appl. Phys. Lett. 90 131907
[21]
Onuma T, Hazu K, Uedono A, Sota T and Chichibu S F 2010 Appl. Phys. Lett. 96 061906
[22]
Bartolo B Di and Powell R C 1976 Phonons and Resonances in Solids (New York:John Wiley & Sons, Inc.) pp. 348-415
[23]
Zhao H and Kalt H 2003 Phys. Rev. B 68 125309
[24]
Pelekanos N T, Ding J, Hagerott M, Nurmikko A V, Luo H, Samarth N and Furdyna J K 1992 Phys. Rev. B 45 6037
[25]
Young P M, Runge E, Ziegler M and Ehrenreich H 1994 Phys. Rev. B 49 7424
[26]
Nashiki, Suemune I, Kumano H, Suzuki H, Obinata T, Uesugi K and Nakahara J 1997 Appl. Phys. Lett. 70 2350
[27]
Wojdak M, Wysmooek A, Pakuoa K and Baranowski J M 1999 Phys. Stat. Sol. 216 95
[28]
Xu S J, Liu W and Li M F 2000 Appl. Phys. Lett. 77 3376
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.