Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 097801    DOI: 10.1088/1674-1056/ab343a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well

Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏)
School of Information Science and Technology & Tongke School of Microelectronics, Nantong University, Nantong 226019, China
Abstract  

The optical properties of the type-Ⅱ lineup InxAl1-xN-Al0.59Ga0.41N/Al0.74Ga0.26N quantum well (QW) structures with different In contents are investigated by using the six-by-six K-P method. The type-Ⅱ lineup structures exhibit the larger product of Fermi-Dirac distribution functions of electron fcn and hole (1-fvUm) and the approximately equal transverse electric (TE) polarization optical matrix elements (|Mx|2) for the c1-v1 transition. As a result, the peak intensity in the TE polarization spontaneous emission spectrum is improved by 47.45%-53.84% as compared to that of the conventional AlGaN QW structure. In addition, the type-Ⅱ QW structure with x~0.17 has the largest TE mode peak intensity in the investigated In-content range of 0.13-0.23. It can be attributed to the combined effect of|Mx|2 and fcn (1-fvUm) for the c1-v1, c1-v2, and c1-v3 transitions.

Keywords:  type-Ⅱ lineup      quantum well      K-P method      transverse electric (TE) polarized emission  
Received:  06 June 2019      Revised:  07 July 2019      Accepted manuscript online: 
PACS:  78.66.Fd (III-V semiconductors)  
  78.67.De (Quantum wells)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: 

Project supported by the Talent Introduction Project of Nantong University, China (Grant No. 03081055), the National Natural Science Foundation of China (Grant Nos. 61874168 and 61505090), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, China (Grant No. PPZY2015B135), the Six Top Talents of Jiangsu Province, China (Grant No. 2016-XCL-052), the Natural Science Foundation of Nantong University, China (Grant Nos. 03080666 and 14Z003), the Qing Lan Project of Jiangsu Province, China, and Key NSF Program of Jiangsu Provincial Department of Education, China (Grant No. 15KJA510004).

Corresponding Authors:  Youhua Zhu     E-mail:  ntyouhua@ntu.edu.cn

Cite this article: 

Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏) Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well 2019 Chin. Phys. B 28 097801

[1] Hirayama H, Fujikawa S and Kamata N 2015 Electron. Commun. Jpn. 98 1
[2] Liu C, Ooi Y K, Islam S, Xing H, Jena D and Zhang J 2018 Appl. Phys. Lett. 112 011101
[3] Wang L, Song W, Hu W, Li G, Luo X, Wang H, Xiao J, Guo J, Wang X, Hao R, Yi H, Wu Q and Li S 2019 Chin. Phys. B 28 018503
[4] Hideki H, Yusuke T, Tetsutoshi M and Norihiko K 2010 Appl. Phys. Express 3 031002
[5] Jiang X, Shi J, Zhang M, Zhong H, Huang P, Ding Y, Yu T, Shen B, Lu J and Wang X 2014 New J. Phys. 16 113065
[6] Su C Y, Tsai M C, Chou K P, Chiang H C, Lin H H, Su M Y, Wu Y R, Kiang Y W and Yang C C 2017 Opt. Express 25 26365
[7] Arif R A, Zhao H P and Tansu N 2008 Appl. Phys. Lett. 92 011104
[8] Park S H, Ahn D, Koo B H and Oh J E 2010 Appl. Phys. Lett. 96 051106
[9] Zubialevich V Z, Alam S N, Li H N and Parbrook P J 2016 J. Phys. D:Appl. Phys. 49 385105
[10] Wenzel H 2007 Opt. Quant. Electron. 38 953
[11] Chuang S L and Chang C S 1996 Phys. Rev. B 54 2491
[12] Chuang S L and Chang C S 1997 Semicond. Sci. Tech. 12 252
[13] Vurgaftman I and Meyer J R 2007 Nitride Semiconductor Devices:Principles and Simulation (Gemany:Wiley-VCH Verlag GmbH & Co. KGaA) pp. 121, 309
[14] Moses P G and Van de Walle C G 2010 Appl. Phys. Lett. 96 021908
[15] Li H, Liu X, Sang L, Wang J, Jin D, Zhang H, Yang S, Liu S, Mao W, Hao Y, Zhu Q and Wang Z 2014 Phys. Status. Solidi. B 251 788
[16] Li Y, Zhu Y, Huang J, Deng H, Wang M and Yin H 2017 J. Appl. Phys. 121 053105
[17] Li Y, Zhang R, Xie Z, Liu B, Chen P, Zhang G, Tao T, Zhuang Z, Zhi L, Gan T and Zheng Y 2013 J. Appl. Phys. 114 113104
[18] Wang J, Yan J, Guo Y, Zhang Y, Tian Y, Zhu S, Chen X, Sun L and Li J 2015 Sci. Sin. Phys. Mech. & Astron. 45 067303-067301-067303
[19] Kuo Y K, Chang J Y, Chang H T, Chen F M, Shih Y H and Liou B T 2017 IEEE J. Quantum Elect. 53 1
[20] Zhuang Z, Li Y, Liu B, Guo X, Dai J, Zhang G, Tao T, Zhi T, Xie Z, Ge H, Shi Y, Zheng Y and Zhang R 2015 J. Appl. Phys. 118 233111
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[4] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[5] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[6] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[7] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[8] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[9] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[10] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[11] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[12] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[13] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
[14] Nonlocal effect on resonant radiation force exerted on semiconductor coupled quantum well nanostructures
Jin-Ke Zhang(张金珂), Ting-Ting Zhang(张婷婷), Yu-Liang Zhang(张玉亮), Guang-Hui Wang(王光辉), Dong-Mei Deng(邓冬梅). Chin. Phys. B, 2019, 28(6): 066803.
[15] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
No Suggested Reading articles found!