Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 043701    DOI: 10.1088/1674-1056/27/4/043701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quantitative evaluation of space charge effects of laser-cooled three-dimensional ion system on a secular motion period scale

Li-Jun Du(杜丽军)1,2, Hong-Fang Song(宋红芳)2,3,4,5, Shao-Long Chen(陈邵龙)2,3,4,5, Yao Huang(黄垚)2,3,4, Xin Tong(童昕)2,3,4, Hua Guan(管桦)2,3,4, Ke-Lin Gao(高克林)2,3,4
1. China Academy of Space Technology(Xi'an), Xi'an 710100, China;
2. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
3. Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
4. Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China;
5. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

In this paper, we introduce a method of quantitatively evaluating and controlling the space charge effect of a laser-cooled three-dimensional (3D) ion system in a linear Paul trap. The relationship among cooling efficiency, ion quantity, and trapping strength is analyzed quantitatively, and the dynamic space distribution and temporal evolution of the 3D ion system on a secular motion period time scale in the cooling process are obtained. The ion number influences the eigen-micromotion feature of the ion system. When trapping parameter q is~0.3, relatively ideal cooling efficiency and equilibrium temperature can be obtained. The decrease of axial electrostatic potential is helpful in reducing the micromotion heating effect and the degradation in the total energy. Within a single secular motion period under different cooling conditions, ions transform from the cloud state (each ion disperses throughout the envelope of the ion system) to the liquid state (each ion is concentrated at a specific location in the ion system) and then to the crystal state (each ion is subjected to a fixed motion track). These results are conducive to long-term storage and precise control, motion effect suppression, high-efficiency cooling, and increasing the precision of spectroscopy for a 3D ion system.

Keywords:  space charge effects      cooling dynamics      ion trajectory      ion energy  
Received:  03 November 2017      Revised:  21 December 2017      Accepted manuscript online: 
PACS:  37.10.Ty (Ion trapping)  
  37.10.Rs (Ion cooling)  
  37.90.+j (Other topics in mechanical control of atoms, molecules, and ions)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304401), the National Natural Science Foundation of China (Grant Nos. 11622434, 11474318, 91336211, and 11634013), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), Hubei Province Science Fund for Distinguished Young Scholars (Grant No. 2017CFA040), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015274).

Corresponding Authors:  Hua Guan     E-mail:  guanhua@wipm.ac.cn

Cite this article: 

Li-Jun Du(杜丽军), Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Yao Huang(黄垚), Xin Tong(童昕), Hua Guan(管桦), Ke-Lin Gao(高克林) Quantitative evaluation of space charge effects of laser-cooled three-dimensional ion system on a secular motion period scale 2018 Chin. Phys. B 27 043701

[1] Vedel F and Andre J 1984 Phys. Rev. A 29 2098
[2] Du L J, Song H F, Li H X, Chen S L, Chen T, Sun H Y, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 113703
[3] Wineland D J, Bollinger J J, Itano W M and Prestage J D 1985 J Opt. Soc. Am. B 2 1721
[4] Todd J F J, Waldren R M, Freer D A and Turner R B 1980 Int. J. Mass Spectrom. Ion Process. 35 107
[5] Roth B, Blythe P and Schiller S 2007 Phys. Rev. A 75 023402
[6] Prestage J D, Williams A, Maleki L, Djomehri M J and Harabetian E 1991 Phys. Rev. Lett. 66 2964
[7] Zhang C B, Offenberg D, Roth B, Wilson M A and Schiller S 2007 Phys. Rev. A 76 012719
[8] Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L 2014 Chin. Phys. B 23 123702
[9] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[10] Du L J, Chen T, Song H F, Chen S L, LI H X, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 083702
[11] Verlet L 1967 Phys. Rev. 159 98
[12] Verlet L 1968 Phys. Rev. 165 201
[13] Zhang M Q and Skeel R D 1995 J. Comput. Chem. 16 365
[14] Tolmachev A V, Udseth H R and Smith R D 2000 Anal. Chem. 72 970
[15] Dehmelt H G 1969 Adv. At. Mol. Phys. 5 109
[16] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[17] Paul W, Osberghaus O and Fischer E 1958 Forschungsberichte des Wirtschafts und Verkehrsministeriums Nordrhein-Westfalen 415 1
[18] Slattery W L, Doolen G D and Dewitt H E 1980 Phys. Rev. A 21 2087
[19] Mitchell T B, Bollinger J J, Dubin D H E, Huang X P, Itano W M and Baughman R H 1998 Science 282 1290
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[3] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[4] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[5] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[6] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[7] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[8] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[9] Phase jump in resonance harmonic emission driven by strong laser fields
Yuan-Yuan Zhao(赵媛媛), Di Zhao(赵迪), Chen-Wei Jiang(蒋臣威), Ai-Ping Fang(方爱平), Shao-Yan Gao(高韶燕), Fu-Li Li(李福利). Chin. Phys. B, 2020, 29(2): 023201.
[10] Beryllium carbide as diffusion barrier against Cu: First-principles study
Hua-Liang Cao(曹华亮), Xin-Lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2020, 29(1): 016601.
[11] Effects of CeO2 and nano-ZrO2 agents on the crystallization behavior and mechanism of CaO-Al2O3-MgO-SiO2-based glass ceramics
Yan Zhang(张艳), Yu Shi(石钰), Xuefeng Zhang(张雪峰), Fengxia Hu(胡凤霞), Jirong Sun(孙继荣), Tongyun Zhao(赵同云), Baogen Shen(沈保根). Chin. Phys. B, 2019, 28(7): 078107.
[12] Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO
Rui Li(李瑞), Gui-Ying Liang(梁桂颖), Xiao-He Lin(林晓贺), Yu-Hao Zhu(朱宇豪), Shu-Tao Zhao(赵书涛), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(4): 043102.
[13] How to characterize capacitance of organic optoelectronic devices accurately
Hao-Miao Yu(于浩淼), Yun He(何鋆). Chin. Phys. B, 2018, 27(6): 067202.
[14] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[15] Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter
Sheng-Fang Huang(黄胜方), Hui-Min Song(宋慧敏), Yun Wu(吴云), Min Jia(贾敏), Di Jin(金迪), Zhi-Bo Zhang(张志波), Bing-Xuan Lin(林冰轩). Chin. Phys. B, 2018, 27(3): 035203.
No Suggested Reading articles found!