|
|
Determining the structural phase transition point from the temperature of 40Ca+ Coulomb crystal |
Chen Ting (陈婷)a b c, Du Li-Jun (杜丽军)a b c, Song Hong-Fang (宋红芳)a b c, Liu Pei-Liang (刘培亮)a b c, Huang Yao (黄垚)a b, Tong Xin (童昕)a b, Guan Hua (管桦)a b, Gao Ke-Lin (高克林)a b |
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; c University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We observed the linear-to-zigzag structural phase transition of a 40Ca+ crystal in a homemade linear Paul trap. The values of the total temperature of the ion crystals during the phase transition are derived using the molecular-dynamics (MD) simulation method. A series of simulations revealed that the ratio of the radial to axial secular frequencies has a dependence on the total temperature that obeys different functional forms for linear and zigzag structures, and the transition point occurs where these functions intersect; thus, the critical value of the ratio of secular frequencies that drives the structure phase transition can be derived.
|
Received: 25 June 2014
Revised: 10 September 2014
Accepted manuscript online:
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB832803 and 2012CB821301), the National Natural Science Foundation of China (Grant Nos. 11004222 and 91121016), and the Chinese Academy of Sciences. |
Corresponding Authors:
Guan Hua
E-mail: guanhua@wipm.ac.cn
|
Cite this article:
Chen Ting (陈婷), Du Li-Jun (杜丽军), Song Hong-Fang (宋红芳), Liu Pei-Liang (刘培亮), Huang Yao (黄垚), Tong Xin (童昕), Guan Hua (管桦), Gao Ke-Lin (高克林) Determining the structural phase transition point from the temperature of 40Ca+ Coulomb crystal 2014 Chin. Phys. B 23 123702
|
|
| [1] | Diedrich F, Peik E, Chen J M, Quint W and Walther 1987 Phys. Rev. Lett. 59 2931
|
|
| [2] | Wineland D J, Bergquist J C, Itano W M, Bollinger J J and Manney C H 1987 Phys. Rev. Lett. 59 2935
|
|
| [3] | Roth B, Blythe P and Schiller S 2007 Phys. Rev. A 75 023402
|
|
| [4] | Nagerl H C, Leibfried D, Schmidt-Kaler F, Eschner J and Blatt R 1998 Opt. Express 3 89
|
|
| [5] | Dantan A, Albert M, Marler J P, Herskind J P and Drewsen M 2009 Phys. Rev. A 80 041802
|
|
| [6] | Bollinger J J, Mitchell T B, Huang X P, Itano W M, Tan J N, Jelenkovic B M and Wineland D J 2000 Phys. Plasmas 7 7
|
|
| [7] | Asprusten M, Worthington S and Thompson R C 2014 Appl. Phys. B 114 157
|
|
| [8] | Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
|
|
| [9] | Kim K, Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G D, Duan L M and Monroe C 2010 Nature 465 590
|
|
| [10] | Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
|
|
| [11] | Porras D and Cirac J I 2006 Phys. Rev. Lett. 96 250501
|
|
| [12] | Roth B, Fröhlich U and Schiller S 2005 Phys. Rev. Lett. 94 053001
|
|
| [13] | Barletta P, Tennyson J and Barker P F 2009 New J. Phys. 11 055029
|
|
| [14] | Soldán P and Huston J 2004 Phys. Rev. Lett. 92 163202
|
|
| [15] | Tong X, Winney A H and Willitsch S 2010 Phys. Rev. Lett. 105 143001
|
|
| [16] | Ulm S, Rossnagel J, Jacob G, Degunther C, Dawkins S T, Poschinger U G, Nigmatullin R, Tetzker A, Plenio M B, Schmidt-Kaler F and Singer K 2013 Nat. Commun. 4 2290
|
|
| [17] | Pyka K, Keller J, Partner H L, Nigmatullin R, Burgermeister T, Meier D M, Kuhlmann K, Retzker A, Plenio M B, Zurek W H, del Campo A and Mehlstaubler T E 2013 Nat. Commun. 4 2291
|
|
| [18] | Block M, Drakoudis A, Leuthner H, Seibert P and Werth G 2000 J. Phys. B: At. Mol. Opt. Phys. 33 375
|
|
| [19] | Steane A 1997 Appl. Phys. B 64 623
|
|
| [20] | Wineland D J, Drullinger R E and Walls F L 1978 Phys. Rev. Lett. 40 1639
|
|
| [21] | Neuhauser W, Hohenstatt M, Toschek P and Dehmelt H 1978 Phys. Rev. Lett. 41 233
|
|
| [22] | Hänsch T W and Schawlow A L 1975 Opt. Commun. 13 68
|
|
| [23] | Gulde S, Rotter D, Barton P, Schmidt-Kaler F, Blatt R and Hogervorst W 2011 Appl. Phys. B 73 861
|
|
| [24] | Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hänsel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D and Laurent Ph 2009 Phys. Rev. Lett. 102 023002
|
|
| [25] | Huang Y, Liu Q, Cao J, Ou B Q, Liu P, Guan H, Huang X and Gao K 2011 Phys. Rev. A 84 053841
|
|
| [26] | Qu W, Huang Y, Guan H, Huang X and Gao K 2011 Chin. J. Lasers 38 0802008
|
|
| [27] | Semczuk M 2009 "An Ion Trap for Laser Spectroscopy on Lithium Ions" (MS thesis) (Warsaw: University of Warsaw and Max Planck Institute of Quantum Optics) (in Germany)
|
|
| [28] | Zhang C, Offenberg D, Roth B, Wilson M A and Schiller S 2007 Phys. Rev. A 76 012719
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|