|
|
Compensating for excess micromotion of ion crystals |
Du Li-Jun (杜丽军)a b c, Chen Ting (陈婷)a b c, Song Hong-Fang (宋红芳)a b c, Chen Shao-Long (陈邵龙)a b c, Li Hai-Xia (李海霞)a b c, Huang Yao (黄垚)a b, Tong Xin (童昕)a b, Guan Hua (管桦)a b, Gao Ke-Lin (高克林)a b |
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physicsand Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; c University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract A new method of compensating for the excess micromotion along two directions in three-dimensional Coulomb crystals is reported in this paper; this method is based on shape control and optical imaging of a Coulomb crystal in a sectioned linear ion trap. The characteristic parameters, such as the ion numbers, temperatures, and geometric factors of different ion crystals are extracted from the images and secular motion excitation spectra. The method of controlling the shape of the ion crystals can be used in cold ion experiments, such as sympathetically cooling, structural phase transitions, and selective-control of ions, etc.
|
Received: 25 April 2015
Revised: 11 May 2015
Accepted manuscript online:
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821301 and 2010CB832803), the National Natural Science Foundation of China (Grant Nos. 11004222 and 91121016), and the Fund from Chinese Academy of Sciences. |
Corresponding Authors:
Guan Hua
E-mail: guanhua@wipm.ac.cn
|
Cite this article:
Du Li-Jun (杜丽军), Chen Ting (陈婷), Song Hong-Fang (宋红芳), Chen Shao-Long (陈邵龙), Li Hai-Xia (李海霞), Huang Yao (黄垚), Tong Xin (童昕), Guan Hua (管桦), Gao Ke-Lin (高克林) Compensating for excess micromotion of ion crystals 2015 Chin. Phys. B 24 083702
|
[1] |
Slattery W L, Doolen G D and Dewiit H E 1980 Phys. Rev. A 21 2087
|
[2] |
Pollock E L and Hansen J P 1973 Phys. Rev. A 8 3110
|
[3] |
Schir J P 2002 Phys. Rev. Lett. 88 205003
|
[4] |
Dubin D H E 1989 Phys. Rev. A 40 1140
|
[5] |
Jones M D and Ceperley D M 1996 Phys. Rev. Lett. 76 4572
|
[6] |
Pyka K, Keller J, Partner H L, Nigmatullin R, Burgermeister T, Meier D M, Kuhlmann K, Retzker A, Plenio M B, Zurek W H, Campodel A and Mehlstäubler T E 2013 Nat. Commun. 4 2291
|
[7] |
Retzker A, Thompson R C, Segal D M and Plenio M B 2008 Phys. Rev. Lett. 101 260504
|
[8] |
Ulm S, Roßnagel J, Jacob G, Degünther C, Dawkins S T, Poschinger U G, Nigmatullin R, Retzker A, Plenio M B, Schmidt-Kaler F and Singer K 2013 Nat. Commun. 4 2290
|
[9] |
Barrett M D, Chiaverini J, Schaetz T, Britton J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D, Ozeri R and Wineland D J 2004 Nature 429 737
|
[10] |
Porras D and Cirac J I 2006 Phys. Rev. Lett. 96 250501
|
[11] |
Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749
|
[12] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[13] |
Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 Phys. Rev. Lett. 80 2089
|
[14] |
Roth B, Fröhlich U and Schiller S 2005 Phys. Rev. Lett. 94 053001
|
[15] |
Barletta P, Tennyson J and Barker P F 2009 New J. Phys. 11 055029
|
[16] |
Soldán P and Huston J 2004 Phys. Rev. Lett. 92 163202
|
[17] |
Tong X, Winney A H and Willitsch S 2010 Phys. Rev. Lett. 105 143001
|
[18] |
Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
|
[19] |
Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L 2014 Chin. Phys. B 12 123702
|
[20] |
Wineland D J, Drullinger R E and Walls F L 1978 Phys. Rev. Lett. 40 1639
|
[21] |
Neuhauser W, Hohenstatt M, Toschek P and Dehmelt H G 1978 Phys. Rev. Lett. 41 233
|
[22] |
Hänsch T W and Schawlow A L 1975 Opt. Commun. 13 68
|
[23] |
Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53
|
[24] |
Dehmelt H G 1969 Adv. At. Mol. Phys. 5 109
|
[25] |
Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
|
[26] |
Georgiadis R and Armentrout P B 1988 J. Phys. Chem. 92 7060
|
[27] |
Zhang C B, Offenberg D, Roth B, Wilson M A and Schiller S 2007 Phys. Rev. A 76 012719
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|