Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107506    DOI: 10.1088/1674-1056/ade426
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Coupling of magnon modes in nanodisk with spin texture

Zijie Zhou(周子杰), Junning Zhao(赵俊宁), Xinhui Ma(马心慧), Rong Wang(王熔), and Fusheng Ma(马付胜)†
Key Laboratory of State Manipulation and Advanced Materials in Provincial Universities, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China
Abstract  Magnetic nanostructures with nonhomogeneous magnetic properties exhibit distinct magnon modes, and their interactions are crucial for understanding magnetization dynamics. In this work, we numerically investigate the magnon-magnon coupling in a nanodisk with radially varying magnetic anisotropy by using micromagnetic simulations. By introducing perpendicular magnetic anisotropy into the inner region of the nanodisk, a radially chiral spin texture is observed. The presence of the chiral spin texture results in coupling between the ferromagnetic resonance mode of the whole disk and the higher-order confined modes in the outer region. Moreover, we find that the coupling strength is highly sensitive to the perpendicular magnetic anisotropy, the saturation magnetization, and the interfacial Dzyaloshinskii-Moriya interaction. Our findings could enrich the understanding of the dynamic characteristics of chiral nanomagnets and suggest a possible route to harnessing tunable magnon-magnon coupling for spin-based quantum information processing.
Keywords:  coupling      magnon      chiral spin texture      micromagnetic simulation  
Received:  31 March 2025      Revised:  12 June 2025      Accepted manuscript online:  13 June 2025
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.78.Cd (Micromagnetic simulations ?)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.78.-n (Magnetization dynamics)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2023YFF0718400) and the National Natural Science Foundation of China (Grant Nos. 12474119 and 12074189).
Corresponding Authors:  Fusheng Ma     E-mail:  phymafs@njnu.edu.cn

Cite this article: 

Zijie Zhou(周子杰), Junning Zhao(赵俊宁), Xinhui Ma(马心慧), Rong Wang(王熔), and Fusheng Ma(马付胜) Coupling of magnon modes in nanodisk with spin texture 2025 Chin. Phys. B 34 107506

[1] Eslami S, Gibbs J G, Rechkemmer Y, Slageren J V, Alarcon-Correa M, Lee T C, Mark A G, Rikken G L J A and Fischer P 2014 ACS Photonics. 1 11
[2] Luo Z C, Dao T P, Hrabec A, Vijayakumar J, Kleibert A, Baumgartner M, Kirk E, Cui J, Savchenko T, Krishnaswamy G, Heyderman L J and Gambardella P 2019 Science 363 1435
[3] Yang S H, Naaman R, Paltiel Y and Parkin S S P 2021 Nat. Rev. Phys. 3 328
[4] Cheong S and Xu X H 2022 Npj Quantum Mater. 7 40
[5] Yu T, Luo Z C and Bauer G E W 2023 Phys. Rep. 1009 1
[6] Dvořák V 1971 Phys. Status Solidi. 46 763
[7] Moriya T 1960 Phys. Rev. 120 91
[8] Vélez S, Schaab J, Wörnle M S, Müller M, Gradauskaite E, Welter P, Gutgsell C, Nistor C, Degen C L, Trassin M, FiebigMand Gambardella P 2019 Nat. Commun. 10 4750
[9] Bode M, Heide M, Bergmann K V, Ferriani P, Heinze S, Bihlmayer G, Kubetzka A, Pietzsch O, Blügel S and Wiesendanger R 2007 Nature 447 190
[10] Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M and Finocchio G 2016 Phys. Rev. Lett. 117 087204
[11] Li H N, Xue T X, Chen L, Sui Y R and Wei M B 2022 Chin. Phys. B 31 097501
[12] Yang M S, Fang L and Chi Y Q 2018 Chin. Phys. B 27 098504
[13] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[14] Heinze S, Bergmann K V, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
[15] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[16] Wang Z Y, Yuan H Y, Cao Y S, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202
[17] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101
[18] Li Y, ZhangW, Tyberkevych V, KwokWK, Hoffmann A and Novosad V 2020 J. Appl. Phys. 128 130902
[19] Pirro P, Vasyuchka V, Serga A and Hillebrands B 2021 Nat. Rev. Mater. 6 1114
[20] Lan G B, Liu K Y, Wang Z Y, Xia F, Xu H J, Guo T Y, Zhang Y, He B, Li J H,Wan C H, Bauer G EW, Yan P, Liu G Q, Pan X Y, Han X F and Yu G Q 2025 Nat. Commun. 16 1178
[21] Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501
[22] Chumak A V, Vasyuchka V I, Serga A and Hillebrands B 2015 Nat. Phys. 11 453
[23] Han X F, Tao L L,Wu H, Tang P and Xing Y W 2023 J. Phys. D: Appl. Phys. 56 443001
[24] Choudhury S, Chaurasiya A K, Mondal A K, Rana B, Miura K, Takahashi H, Otani Y C and Barman A 2020 Sci. Adv. 6 5457
[25] Yuan H Y, Cao Y S, Kamra A, Duine R and Yan P 2022 Phys. Rep. 965 1
[26] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401
[27] Hou J T and Liu L 2019 Phys. Rev. Lett. 123 107702
[28] Li Y, Polakovic T, Wang Y L, Xu J, Lendinez S, Zhang Z, Ding J, Khaire T, Saglam H, Divan R, Pearson J, KwokWK, Xiao Z, Novosad V, Hoffmann A and Zhang W 2019 Phys. Rev. Lett. 123 107701
[29] Klingler S, Amin V, Geprägs S, Ganzhorn K, Maier-Flaig H, Althammer M, Huebl H, Gross R, McMichael R D, Stiles M D, Goennenwein S T B and Weiler M 2018 Phys. Rev. Lett. 120 127201
[30] Chen J L, Liu C P, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M and Yu H M 2018 Phys. Rev. Lett. 120 217202
[31] Berk C, Jaris M, Yang W G, Dhuey S, Cabrini S and Schmidt H 2019 Nat. Commun. 10 2652
[32] Zhang X F, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286
[33] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[34] Morris R G E, Loo A F V, Kosen S and Karenowska A D 2017 Sci. Rep. 7 11511
[35] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405
[36] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2016 C. R. Phys. 17 729
[37] Tang J, Ke Y J, He W, Zhang X Q, Zhang W, Li N, Zhang Y S, Li Y and Cheng Z H 2018 Adv. Mater. 30 1706439
[38] Shiota Y, Taniguchi T, Ishibashi M, Moriyama T and Ono T 2020 Phys. Rev. Lett. 125 017203
[39] Chen L N, Gao Z Y, Zhou K Y, Du Y W and Liu R H 2021 Phys. Rev. Appl. 16 034004
[40] Sheng L T, Mehrdad E, Chen J L, He W Q, Wang Y Z, Wang H C, Feng H M, Zhang Y, Israa M, Liu S, Jiang W J, Han X F, Yu D P, Jean-Philippe A, Gerrit E W B and Yu H M 2023 Phys. Rev. Lett. 130 046701
[41] Dai C T and Ma F S 2021 Appl. Phys. Lett. 118 112405
[42] Xiao X, Chen Z D, Dai C T and Ma F S 2022 J. Appl. Phys. 131 093905
[43] Wang Y Q, Zhang Y, Li C Z, Wei J W, He B, Xu H J, Xia J H, Luo X M, Li J H, Dong J, He W Q, Yan Z R, Yang W L, Ma F S, Chai G Z, Yan P, Wan C H, Han X F and Yu G Q 2024 Nat. Commun. 15 2077
[44] Berk C, Jaris M, Yang W G, Dhuey S, Cabrini S and Schmidt H 2019 Nature Commun. 10 2652
[45] Tsymbal 2020 Appl. Phys. Lett. 77 2740
[46] Krishnia S, Haltz E, Berges L, Aballe L, Foerster M, Bocher L, Weil R, Thiaville A and Sampaio J 2021 Phys. Rev. Appl. 16 024040
[47] Dai C T, Xie K L, Pan Z Z and Ma F S 2020 J. Appl. Phys. 127 203902
[48] Adhikari K, Choudhury S, Barman S, Otani Y and Barman A 2021 Nat. Nanotechnol. 32 395706
[49] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge B V 2014 AIP Adv. 4 107133
[50] Ma F S, Zhou Y, Braun H B and Lew W S 2015 Nano Lett. 15 4029
[51] Zhang T F, Wang Q W, Chen M, Dong J, Zhao Q, Li Z M, Liu Q F, Wang J B and Wei J W 2025 Chin. Phys. B 34 057201
[52] Chen J L, Liu C P, Liu T, Xiao Y, Xia K, Bauner G E W, Wu M Z and Yu H M 2018 Phys. Rev. Lett. 120 217202
[53] DeJong M D, and Livesey K L 2015 Phys. Rev. B 92 214420
[54] Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M and Finocchio G 2016 Phys. Rev. Lett. 117 087204
[55] Moaloc M, Zelent M, Szulc K and Krawczyk M 2024 Sci. Rep. 14 11501
[56] Dion T, Stenning K D, Vanstone A, Holder H H, Sultana R, Alatteili G, Martinez V, Kaffash M T, Kimura T, Oulton R F, Branford W R, Kurebayashi H, Iacocca E, Jungfleisch M B and Gartside J C 2024 Nat. Commun. 15 4077
[57] Santos F J, Dias M and Lounis S 2020 Phys. Rev. B 102 104401
[1] Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets
Haodong Fan(樊浩东), Zhongshu Feng(冯重舒), Tingwei Chen(陈亭伟), Xiaofeng Han(韩晓峰), Xinyu Shu(舒新愉), Mingzhang Wei(卫鸣璋), Shiqi Liu(刘士琦), Mengxi Wang(王梦溪), Shengru Chen(陈盛如), Xuejian Tang(唐学健), Menghao Jin(金蒙豪), Yungui Ma(马云贵), Bo Liu(刘波), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(9): 098501.
[2] Spiral trajectories of asymmetric molecules
Nan Sheng(盛楠), Shiqi Sheng(盛世奇), Yu-Song Tu(涂育松), Rong-Zheng Wan(万荣正), Zuo-Wei Wang(王作维), Zhanchun Tu(涂展春), and Hai-Ping Fang(方海平). Chin. Phys. B, 2025, 34(8): 080507.
[3] Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures
Jun Shan(单俊), Lichuan Zhang(张礼川), Huasu Fu(付华宿), Yuee Xie(谢月娥), Yuriy Mokrousov, and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(8): 087501.
[4] Chaos of cavity optomechanical system with Coulomb coupling
Yingjia Yang(杨应佳), Liwei Liu(刘利伟), Lianchun Yu(俞连春), Weizheng Kong(孔伟正), Haiyan Jiao(焦海燕), Xiaoyan Deng(邓小燕), and Xiaoyong Li(李小勇). Chin. Phys. B, 2025, 34(8): 080503.
[5] Non-quantized Zak phases, PT/APT symmetry transitions, and doubly degenerate exceptional points in a non-Hermitian spin-orbit coupled SSH model
Jun-Xing Huo(霍俊行), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(7): 070301.
[6] Phase-modulated dynamical decoupling sequences robust to systematic amplitude error
Sijie Chen(陈思婕), Guanxing Chen(陈官幸), Jiahao Huang(黄嘉豪), Peiliang Liu(刘培亮), Min Zhuang(庄敏), and Chaohong Lee(李朝红). Chin. Phys. B, 2025, 34(7): 074202.
[7] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[8] First- and second-order magnonic topologies in the ferromagnetic breathing SSH model modulated by non-Hermitian effects
Huasu Fu(付华宿), Lichuan Zhang(张礼川), Rami Mrad, Yuee Xie(谢月娥), and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(6): 067506.
[9] Ground state of SU(3) spin-orbit coupled soft-core Bose gas
Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢). Chin. Phys. B, 2025, 34(6): 060301.
[10] A two-stage injection locking amplifier based on a cavity magnonic oscillator
Mun Kim, Chunlei Zhang, Chenyang Lu, Jacob Burgess, and Can-Ming Hu. Chin. Phys. B, 2025, 34(6): 067104.
[11] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[12] Bifurcation of the bound states in the continuum in a dissipative cavity magnonic system
Xinlin Mi(米锌林), Lijun Yan(闫丽君), Bimu Yao(姚碧霂), Shishen Yan(颜世申), Jinwei Rao(饶金威), and Lihui Bai(柏利慧). Chin. Phys. B, 2025, 34(6): 067508.
[13] Synchronous dynamics of robotic arms driven by Chua circuits
Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰). Chin. Phys. B, 2025, 34(6): 060501.
[14] Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure
Yuxin Ma(马宇欣), Munan Hao(郝木难), Qi Li(李琦), Ke Ma(马克), Haodong Li(李浩东), Duo Zhang(张铎), Ruijin Sun(孙瑞锦), Shifeng Jin(金士锋), and Changchun Zhao(赵长春). Chin. Phys. B, 2025, 34(6): 067402.
[15] Magnon-magnon coupling in noncollinear synthetic antiferromagnets
Tengfei Zhang(张腾飞), Quwen Wang(王曲文), Min Chen(陈敏), Jie Dong(董洁), Qian Zhao(赵乾), Zimu Li(李子木), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Jinwu Wei(魏晋武). Chin. Phys. B, 2025, 34(5): 057201.
No Suggested Reading articles found!