|
Special Issue:
SPECIAL TOPIC — Advanced magnonics
|
| SPECIAL TOPIC — Advanced magnonics |
Prev
Next
|
|
|
Coupling of magnon modes in nanodisk with spin texture |
| Zijie Zhou(周子杰), Junning Zhao(赵俊宁), Xinhui Ma(马心慧), Rong Wang(王熔), and Fusheng Ma(马付胜)† |
| Key Laboratory of State Manipulation and Advanced Materials in Provincial Universities, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China |
|
|
|
|
Abstract Magnetic nanostructures with nonhomogeneous magnetic properties exhibit distinct magnon modes, and their interactions are crucial for understanding magnetization dynamics. In this work, we numerically investigate the magnon-magnon coupling in a nanodisk with radially varying magnetic anisotropy by using micromagnetic simulations. By introducing perpendicular magnetic anisotropy into the inner region of the nanodisk, a radially chiral spin texture is observed. The presence of the chiral spin texture results in coupling between the ferromagnetic resonance mode of the whole disk and the higher-order confined modes in the outer region. Moreover, we find that the coupling strength is highly sensitive to the perpendicular magnetic anisotropy, the saturation magnetization, and the interfacial Dzyaloshinskii-Moriya interaction. Our findings could enrich the understanding of the dynamic characteristics of chiral nanomagnets and suggest a possible route to harnessing tunable magnon-magnon coupling for spin-based quantum information processing.
|
Received: 31 March 2025
Revised: 12 June 2025
Accepted manuscript online: 13 June 2025
|
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
| |
75.78.Cd
|
(Micromagnetic simulations ?)
|
| |
75.75.-c
|
(Magnetic properties of nanostructures)
|
| |
75.78.-n
|
(Magnetization dynamics)
|
|
| Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2023YFF0718400) and the National Natural Science Foundation of China (Grant Nos. 12474119 and 12074189). |
Corresponding Authors:
Fusheng Ma
E-mail: phymafs@njnu.edu.cn
|
Cite this article:
Zijie Zhou(周子杰), Junning Zhao(赵俊宁), Xinhui Ma(马心慧), Rong Wang(王熔), and Fusheng Ma(马付胜) Coupling of magnon modes in nanodisk with spin texture 2025 Chin. Phys. B 34 107506
|
[1] Eslami S, Gibbs J G, Rechkemmer Y, Slageren J V, Alarcon-Correa M, Lee T C, Mark A G, Rikken G L J A and Fischer P 2014 ACS Photonics. 1 11 [2] Luo Z C, Dao T P, Hrabec A, Vijayakumar J, Kleibert A, Baumgartner M, Kirk E, Cui J, Savchenko T, Krishnaswamy G, Heyderman L J and Gambardella P 2019 Science 363 1435 [3] Yang S H, Naaman R, Paltiel Y and Parkin S S P 2021 Nat. Rev. Phys. 3 328 [4] Cheong S and Xu X H 2022 Npj Quantum Mater. 7 40 [5] Yu T, Luo Z C and Bauer G E W 2023 Phys. Rep. 1009 1 [6] Dvořák V 1971 Phys. Status Solidi. 46 763 [7] Moriya T 1960 Phys. Rev. 120 91 [8] Vélez S, Schaab J, Wörnle M S, Müller M, Gradauskaite E, Welter P, Gutgsell C, Nistor C, Degen C L, Trassin M, FiebigMand Gambardella P 2019 Nat. Commun. 10 4750 [9] Bode M, Heide M, Bergmann K V, Ferriani P, Heinze S, Bihlmayer G, Kubetzka A, Pietzsch O, Blügel S and Wiesendanger R 2007 Nature 447 190 [10] Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M and Finocchio G 2016 Phys. Rev. Lett. 117 087204 [11] Li H N, Xue T X, Chen L, Sui Y R and Wei M B 2022 Chin. Phys. B 31 097501 [12] Yang M S, Fang L and Chi Y Q 2018 Chin. Phys. B 27 098504 [13] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031 [14] Heinze S, Bergmann K V, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713 [15] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190 [16] Wang Z Y, Yuan H Y, Cao Y S, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202 [17] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101 [18] Li Y, ZhangW, Tyberkevych V, KwokWK, Hoffmann A and Novosad V 2020 J. Appl. Phys. 128 130902 [19] Pirro P, Vasyuchka V, Serga A and Hillebrands B 2021 Nat. Rev. Mater. 6 1114 [20] Lan G B, Liu K Y, Wang Z Y, Xia F, Xu H J, Guo T Y, Zhang Y, He B, Li J H,Wan C H, Bauer G EW, Yan P, Liu G Q, Pan X Y, Han X F and Yu G Q 2025 Nat. Commun. 16 1178 [21] Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501 [22] Chumak A V, Vasyuchka V I, Serga A and Hillebrands B 2015 Nat. Phys. 11 453 [23] Han X F, Tao L L,Wu H, Tang P and Xing Y W 2023 J. Phys. D: Appl. Phys. 56 443001 [24] Choudhury S, Chaurasiya A K, Mondal A K, Rana B, Miura K, Takahashi H, Otani Y C and Barman A 2020 Sci. Adv. 6 5457 [25] Yuan H Y, Cao Y S, Kamra A, Duine R and Yan P 2022 Phys. Rep. 965 1 [26] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401 [27] Hou J T and Liu L 2019 Phys. Rev. Lett. 123 107702 [28] Li Y, Polakovic T, Wang Y L, Xu J, Lendinez S, Zhang Z, Ding J, Khaire T, Saglam H, Divan R, Pearson J, KwokWK, Xiao Z, Novosad V, Hoffmann A and Zhang W 2019 Phys. Rev. Lett. 123 107701 [29] Klingler S, Amin V, Geprägs S, Ganzhorn K, Maier-Flaig H, Althammer M, Huebl H, Gross R, McMichael R D, Stiles M D, Goennenwein S T B and Weiler M 2018 Phys. Rev. Lett. 120 127201 [30] Chen J L, Liu C P, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M and Yu H M 2018 Phys. Rev. Lett. 120 217202 [31] Berk C, Jaris M, Yang W G, Dhuey S, Cabrini S and Schmidt H 2019 Nat. Commun. 10 2652 [32] Zhang X F, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286 [33] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [34] Morris R G E, Loo A F V, Kosen S and Karenowska A D 2017 Sci. Rep. 7 11511 [35] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405 [36] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2016 C. R. Phys. 17 729 [37] Tang J, Ke Y J, He W, Zhang X Q, Zhang W, Li N, Zhang Y S, Li Y and Cheng Z H 2018 Adv. Mater. 30 1706439 [38] Shiota Y, Taniguchi T, Ishibashi M, Moriyama T and Ono T 2020 Phys. Rev. Lett. 125 017203 [39] Chen L N, Gao Z Y, Zhou K Y, Du Y W and Liu R H 2021 Phys. Rev. Appl. 16 034004 [40] Sheng L T, Mehrdad E, Chen J L, He W Q, Wang Y Z, Wang H C, Feng H M, Zhang Y, Israa M, Liu S, Jiang W J, Han X F, Yu D P, Jean-Philippe A, Gerrit E W B and Yu H M 2023 Phys. Rev. Lett. 130 046701 [41] Dai C T and Ma F S 2021 Appl. Phys. Lett. 118 112405 [42] Xiao X, Chen Z D, Dai C T and Ma F S 2022 J. Appl. Phys. 131 093905 [43] Wang Y Q, Zhang Y, Li C Z, Wei J W, He B, Xu H J, Xia J H, Luo X M, Li J H, Dong J, He W Q, Yan Z R, Yang W L, Ma F S, Chai G Z, Yan P, Wan C H, Han X F and Yu G Q 2024 Nat. Commun. 15 2077 [44] Berk C, Jaris M, Yang W G, Dhuey S, Cabrini S and Schmidt H 2019 Nature Commun. 10 2652 [45] Tsymbal 2020 Appl. Phys. Lett. 77 2740 [46] Krishnia S, Haltz E, Berges L, Aballe L, Foerster M, Bocher L, Weil R, Thiaville A and Sampaio J 2021 Phys. Rev. Appl. 16 024040 [47] Dai C T, Xie K L, Pan Z Z and Ma F S 2020 J. Appl. Phys. 127 203902 [48] Adhikari K, Choudhury S, Barman S, Otani Y and Barman A 2021 Nat. Nanotechnol. 32 395706 [49] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge B V 2014 AIP Adv. 4 107133 [50] Ma F S, Zhou Y, Braun H B and Lew W S 2015 Nano Lett. 15 4029 [51] Zhang T F, Wang Q W, Chen M, Dong J, Zhao Q, Li Z M, Liu Q F, Wang J B and Wei J W 2025 Chin. Phys. B 34 057201 [52] Chen J L, Liu C P, Liu T, Xiao Y, Xia K, Bauner G E W, Wu M Z and Yu H M 2018 Phys. Rev. Lett. 120 217202 [53] DeJong M D, and Livesey K L 2015 Phys. Rev. B 92 214420 [54] Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M and Finocchio G 2016 Phys. Rev. Lett. 117 087204 [55] Moaloc M, Zelent M, Szulc K and Krawczyk M 2024 Sci. Rep. 14 11501 [56] Dion T, Stenning K D, Vanstone A, Holder H H, Sultana R, Alatteili G, Martinez V, Kaffash M T, Kimura T, Oulton R F, Branford W R, Kurebayashi H, Iacocca E, Jungfleisch M B and Gartside J C 2024 Nat. Commun. 15 4077 [57] Santos F J, Dias M and Lounis S 2020 Phys. Rev. B 102 104401 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|