Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107503    DOI: 10.1088/1674-1056/acd61f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd-Fe-B sintered magnets

Zhiteng Li(李之藤)1,2, Haibo Xu(徐海波)2, Feng Liu(刘峰)3, Rongshun Lai(赖荣舜)1,2, Renjie Wu(武仁杰)2, Zhibin Li(李志彬)2, Yangyang Zhang(张洋洋)1,2, and Qiang Ma(马强)1,2,†
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China;
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China;
3 Baotou Yunsheng Strong Magnet Material Co., LTD, Baotou 014000, China
Abstract  As the channel for grain boundary diffusion (GBD) in Nd-Fe-B magnets, grain boundary (GB) phases have a very important effect on GBD. As doping elements that are commonly used to regulate the GB phases in Nd-Fe-B sintered magnets, the influences of Ga and Zr on GBD were investigated in this work. The results show that the Zr-doped magnet has the highest coercivity increment (7.97 kOe) by GBD, which is almost twice that of the Ga-doped magnet (4.32 kOe) and the magnet without Ga and Zr (3.24 kOe). Microstructure analysis shows that ZrB2 formed in the Zr-doped magnet plays a key role in increasing the diffusion depth. A continuous diffusion channel in the magnet can form because of the presence of ZrB2. ZrB2 can also increase the defect concentration in GB phases, which can facilitate GBD. Although Ga can also improve the diffusion depth, its effect is not very obvious. The micromagnetic simulation based on the experimental results also proves that the distribution of Tb in the Zr-doped magnet after GBD is beneficial to coercivity. This study reveals that the doping elements Ga and Zr in Nd-Fe-B play an important role in GBD, and could provide a new perspective for researchers to improve the effects of GBD.
Keywords:  Nd-Fe-B sintered magnet      ZrB2 phase      grain boundary diffusion      micromagnetic simulation  
Received:  07 February 2023      Revised:  15 May 2023      Accepted manuscript online:  17 May 2023
PACS:  75.50.Ww (Permanent magnets)  
  75.50.Vv (High coercivity materials)  
  75.78.Cd (Micromagnetic simulations ?)  
  75.20.En (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52261037), self-deployed Projects of Ganjiang Innovation Academy, Chinese Academy of Sciences (Grant No. E055B002), the Project of Baotou City Science and Technology (Grant No. XM2022BT04), the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-CN-2021-3) and the Key Research Project of Jiangxi Province (Grant No. 20203ABC28W006).
Corresponding Authors:  Qiang Ma     E-mail:  maqiang5019@126.com

Cite this article: 

Zhiteng Li(李之藤), Haibo Xu(徐海波), Feng Liu(刘峰), Rongshun Lai(赖荣舜), Renjie Wu(武仁杰), Zhibin Li(李志彬), Yangyang Zhang(张洋洋), and Qiang Ma(马强) Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd-Fe-B sintered magnets 2023 Chin. Phys. B 32 107503

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Dorcec L, Pevec D, Vdovic H, Babic J and Podobnik V 2019 Journal of Cleaner Production 210 887
[3] Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M and Yamauchi H 1986 J. Appl. Phys. 59 873
[4] Herbst J F 1991 Rev. Mod. Phys. 63 819
[5] Herbst J F and Yelon W B 1985 J. Appl. Phys. 57 2343
[6] Park K T 2000 Proceedings of 16th International Workshop on Rare Earth Magnets and Their Applications, 2000, Sendai, Japan, p. 257
[7] Kim T H, Sasaki T T, Koyama T, Fujikawa Y, Miwa M, Enokido Y, Ohkubo T and Hono K 2020 Scri. Mater. 178 433
[8] Löewe K, Brombacher C, Katter M and Gutfleisch O 2015 Acta Mater. 83 248
[9] Hono K and Sepehri-Amin H 2018 Scri. Mater. 151 6
[10] Sugimoto S 2011 J. Phys. D: Appl. Phys. 44 064001
[11] Li J, Sepehri-Amin H, Sasaki T, Ohkubo T and Hono K 2021 Sci. Technol. Adv. Mat. 22 386
[12] Sepehri-Amin H, Ohkubo T and Hono K 2013 Acta Mater. 61 1982
[13] Oono N, Sagawa M, Kasada R, Matsui H and Kimura A 2011 J. Magn. Magn. Mater. 323 297
[14] Liu Z W, He J Y and Ramanujan R V 2021 Mater. Design 209 110004
[15] Zhao L Z, He J Y, Li W, Liu X L, Zhang J, Wen L, Zhang Z H, Hu J W, Zhang J S, Liao X F, Xu K, Fan W B, Song W Y, Yu H Y, Zhong X C, Liu Z W and Zhang X F 2021 Adv. Funct. Mater. 32 2109529
[16] Jin L, Ding G F, Zhu J H, Jin Z H, Zheng B, Guo S, Chen R J, Yan A R and Liu X C 2021 J. Alloys Compd. 870 159375
[17] Zhou T J, Guo Y, Xie G Q, Rehman S U, Liu R H, Liu J R, Qu P P and Li M F 2021 Intermetallics 138 107335
[18] Jin L, Jin Z H, Zhu J H, Ding G F, Zheng B, Guo S, Chen R J, Yan A R and Liu X C 2021 Chin. Phys. B 30 027503
[19] Jin Z H, Ding G F, Fan X D, Cao S, Fan S N, Wang Z X, Zheng B, Guo S, Chen R J, Yan A R and Liu X C 2022 J. Alloys Compd. 926 166725
[20] Zeng H X, Liu Z W, Li W, Zhang J S, Zhao L Z, Zhong X C, Yu H Y and Guo B C 2019 J. Magn. Magn. Mater. 471 97
[21] Li J J, Huang X Y, Zeng L L, Ouyang B, Yu X Q, Yang M N, Yang B, Rawat R S and Zhong Z C 2020 J. Mater. Sci. Technol. 41 81
[22] Wang E H, Xiao C H, He J Y, Lu C F, Hussain M, Tang R H, Zhou Q and Liu Z W 2021 Appl. Surf. Sci. 565 150545
[23] Zhou Q, Liu Z W, Zhong X C and Zhang G Q 2015 Mater. Design 86 114
[24] Chen W, Huang Y L, Luo J M, Hou Y H, Ge X J, Guan Y W, Liu Z W, Zhong Z C and Wang G P 2019 J. Magn. Magn. Mater. 476 134
[25] Bae K H, Lee S R, Kim H J, Lee M W and Jang T S 2015 J. Appl. Phys. 118 203902
[26] Diao S L, Luo Y, Yan W L, Peng H J, Dong Y, Yi H B, Wu S J, Zhang S and Yu D B 2022 J. Magn. Magn. Mater. 556 169429
[27] Zhong S W, Yang M N, Rehman S U, Luo S G, Li L G, Li C, Li J J, Xiong S H, Bulyk I and Yang B 2023 J. Rare Earth 41 1068
[28] Gabay A M, Zhang Y and Hadjipanayis G C 2002 J. Magn. Magn. Mater. 238 226
[29] Shaaban A 2007 AIP Conf. Proc. 909 63
[30] Sasaki T T, Ohkubo T, Takada Y, Sato T, Kato A, Kaneko Y and Hono K 2016 Scri. Mater. 113 218
[31] Huang Q F, Jiang Q Z, Hu J F, Rehman S U, Fu G, Quan Q C, Huang J X, Xu D Q, Chen D K and Zhong Z C 2022 J. Mater. Sci. Technol. 106 236
[32] Zhang Z H, Jin J Y, Liang L P, Peng B X, Liu Y S, Fu S and Yan M 2019 J. Magn. Magn. Mater. 487 165356
[33] Xu F, Wang J, Dong X P, Zhang L T and Wu J S 2011 J. Alloys Compd. 509 7909
[34] Liu D, Ma T Y, Wang L C, Liu Y L, Zhao T Y, Hu F X, Sun J R and Shen B G 2019 J. Phys. D: Appl. Phys. 52 135002
[35] Kim S K, Hwang S and Lee J H 2019 J. Magn. Magn. Mater. 486 165257
[36] Li L, Dong S Z, Chen H S, Jiang R J, Li D, Han R, Zhou D, Zhu M G, Li W and Sun W 2019 Chin. Phys. B 28 037502
[37] Scholz W, Fidler J, Schrefl T, Suess D, Dittrich R, Forster H and Tsiantos V 2003 Comp. Mater. Sci. 28 366
[38] Du Q, Faber V and Gunzburger M 1999 SIAM Rev. 41 637
[39] Quey R, Dawson P R and Barbe F 2011 Comput. Meth. Appl. M. 200 1729
[40] Geuzaine C and Remacle J F 2009 Int. J. Numer. Meth. Eng. 79 1309
[41] Schrefl T, Fischer R, Fidler J and Kronmüller H 1994 J. Appl. Phys. 76 7053
[42] Zhang P Y, Ge H L, Pan M X, Wu Q, Yang H F, Jiao Z W, Gong J and Peng X L 2011 Adv. Mater. Res. 179-180 751
[43] Tsutai A, Sakai I, Mizoguchi T and Inomata K 1987 Appl. Phys. Lett. 51 1043
[44] Zhou S Z and Dong Q F 2004 Super Permanent Magnets RE-Iron Based Permanent Materials (Beijing: Metallurgical Industry Press) p. 72 (in Chinese)
[45] Li W, Zhou Q, Zhao L Z, Wang Q X, Zhong X C and Liu Z W 2018 J. Magn. Magn. Mater. 451 704
[1] Effect of TbF3 diffusion on the demagnetization behavior and domain evolution of sintered Nd-Fe-B magnets by electrophoretic deposition
Xue-Jing Cao(曹学静), Shuai Guo(郭帅), Yu-Heng Xie(谢宇恒), Lei Jin(金磊), Guang-Fei Ding(丁广飞),Bo Zheng(郑波), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097503.
[2] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[3] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[4] In-plane spin excitation of skyrmion bags
Shuang Li(李爽), Ke-Xin Li(李可欣), Zhao-Hua Liu(刘照华), Qi-Yuan Zhu(朱起源), Chen-Bo Zhao(赵晨博), Hu Zhang(张虎), Xing-Qiang Shi(石兴强), Jiang-Long Wang(王江龙), Rui-Ning Wang(王瑞宁), Ru-Qian Lian(连如乾), Peng-Lai Gong(巩朋来), and Chen-Dong Jin(金晨东). Chin. Phys. B, 2023, 32(11): 117503.
[5] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[6] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[7] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[8] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[9] Progress in recycling of Nd-Fe-B sintered magnet wastes
Ming Yue(岳明), Xiaowen Yin(尹小文), Weiqiang Liu(刘卫强), Qingmei Lu(路清梅). Chin. Phys. B, 2019, 28(7): 077506.
[10] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[11] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[12] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[13] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[14] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[15] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
No Suggested Reading articles found!