| SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience |
Prev
Next
|
|
|
Memristor-coupled dynamics and synchronization in two bi-neuron Hopfield neural networks |
| Fangyuan Li(李芳苑)1,2, Haigang Tang(唐海刚)3, Yunzhen Zhang(张云贞)4, Bocheng Bao(包伯成)3,†, Hany Hassanin5, and Lianfa Bai(柏连发)2 |
1 School of Electronic Information, Nanjing Vocational College of Information Technology, Nanjing 210023, China; 2 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 3 Wang Zheng School of Microelectronics, Changzhou University, Changzhou 213159, China; 4 School of Information Engineering, Xuchang University, Xuchang 461000, China; 5 School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT11QU, UK |
|
|
|
|
Abstract Neural synchronization is associated with various brain disorders, making it essential to investigate the intrinsic factors that influence the synchronization of coupled neural networks. In this paper, we propose a minimal architecture as a prototype, consisting of two bi-neuron Hopfield neural networks (HNNs) coupled via a memristor. This coupling elevates the original two bi-neuron HNNs into a five-dimensional system, featuring an unstable line equilibrium set and rich dynamics absent in the uncoupled case. Our results show that varying the coupling strength and the initial state of the memristor can induce periodic, chaotic, hyperchaotic, and quasi-periodic oscillations, as well as initial-offset-regulated multistability. We derive sufficient conditions for achieving exponential synchronization and identify multiple synchronous regimes with transitions that strongly depend on the initial states. Field-programmable gate array (FPGA) implementation confirms the predicted dynamics and synchronization in real time, demonstrating that the memristive coupler enables complex dynamics and controllable synchronization in the most compact Hopfield architecture, with implications for the study of neuromorphic circuits and synchronization.
|
Received: 18 August 2025
Revised: 03 October 2025
Accepted manuscript online: 07 October 2025
|
|
PACS:
|
87.19.lg
|
(Synapses: chemical and electrical (gap junctions))
|
| |
87.19.lj
|
(Neuronal network dynamics)
|
| |
87.19.lm
|
(Synchronization in the nervous system)
|
| |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62271088), the Qinglan Project of Jiangsu Province, and the Jiangsu Government Scholarship for Overseas Studies, the Training Plan of Young Backbone Teachers in Universities of Henan Province (Grant No. 2023GGJS142), and the Key Scientific Research of Colleges and Universities in Henan Province (Grant No. 25A120009). |
Corresponding Authors:
Bocheng Bao
E-mail: mervinbao@126.com
|
Cite this article:
Fangyuan Li(李芳苑), Haigang Tang(唐海刚), Yunzhen Zhang(张云贞), Bocheng Bao(包伯成), Hany Hassanin, and Lianfa Bai(柏连发) Memristor-coupled dynamics and synchronization in two bi-neuron Hopfield neural networks 2025 Chin. Phys. B 34 128701
|
[1] Korn H and Faure P 2003 Comptes Rendus Biologies 326 787 [2] McKenna T M, McMullen T A and Shlesinger M F 1994 Neuroscience 60 587 [3] Thottil S K and Ignatius R P 2017 Nonlinear Dyn. 87 1879 [4] Wu H G, Gu J X, Wang N, Chen M and Xu Q 2025 Chaos Soliton Fractals 192 115969 [5] Du S C, Zhang Z D, Li J, Sun C, Sun J R and Hong Q H 2024 IEEE Trans. Biomed. Circuits Syst. 17 433 [6] Hopfield J J 1984 Proc. Natl. Acad. Sci. USA 81 3088 [7] Hu J Y C, Wu D and Liu H 2024 Adv. Neural Inf. Process. Syst. 37 70693 [8] Rbihou S, Joudar N E and Haddouch K 2024 Ann. Math. Artif. Intell. 92 257 [9] Li X X, He Q Q, Yu T Y, Cai Z and Xu G Z 2024 Chin. Phys. B 33 030505 [10] Feng B S and Liu Z Y 2025 Nonlinear Dyn. 113 23521 [11] Ravi V 2025 Phys. Scr. 100 035011 [12] Yu F, Zhang Z N, Shen H, Huang Y Y, Cai S and Du S C 2022 Chin. Phys. B 31 020505 [13] Lai Q, Qin M H and Chen G R 2025 Chaos Soliton Fractals 199 116663 [14] Li F Y, Chen Z G, Zhang Y Z, Bai L F and Bao B C 2024 AEU-Int. J. Electron Commun. 174 155037 [15] Sporns O 2013 NeuroImage 80 53 [16] Grover S, Nguyen J A and Reinhart R M 2021 Annu. Rev. Med. 72 29 [17] Min F H, Chen C J and Broderick N G R 2025 IEEE Trans. Neural Netw. Learn. Syst. 36 11632 [18] Zhou P, Ma J and Xu Y 2023 Chaos Soliton Fractals 169 113238 [19] Wu F Q, Kang T, Shao Y and Wang Q Y 2023 Chaos Soliton Fractals 172 113569 [20] Prodromakis T, Toumazou C and Chua L 2012 Nat. Mater. 11 478 [21] Lanza M, Pazos S, Aguirre F, Sebastian A, Le Gallo M, Alam S M, Ikegawa S, Yang J J, Vianello E, Chang M F, Molas G, Naveh I, Ielmini D, Liu M and Roldan J B 2025 Nature 640 613 [22] Song F M, Shao H, Ming J Y, Sun J T, Li W, Yi M D, Xie L H and Ling H F 2024 Adv. Mater. Technol. 9 2400764 [23] Qin M H, Lai Q, Wang H T and W Z Q 2025 Chaos 35 023123 [24] Ma Q Q, Lu A J and Huang Z 2024 Chin. Phys. B 33 120502 [25] Yang F F, Ma J and Wu F Q 2024 Chaos Soliton Fractals 187 115361 [26] Yu X H, Bao H, Xu Q, Chen M and Bao B C 2024 Neural Netw. 180 106728 [27] Biamou A L M, Tamba V K, Tagne F K and Takougang A C N 2024 Chaos Soliton Fractals 178 114267 [28] Sun J W, Li C C, Wang Z C and Wang Y F 2023 Appl. Math. Model 121 463 [29] Ding D W, Niu Y, Zhang H W, Yang Z L, Wang J, Wang W and Wang M Y 2024 Chin. Phys. B 33 050503 [30] Lin H R, Wang C H, Li C, Sun Y C, Xu C and Yu F 2022 IEEE Trans. Ind. Informat. 18 8839 [31] Bao H, Li K X, Ma J, Hua Z Y, Xu Q, and Bao B C 2023 Sci. China Technol. Sci. 66 3153 [32] Ma T, Mou J, Al-Barakati A, Jahanshahi H and Miao M 2023 Phys. Scr. 98 105202 [33] Ma M M, Xiong K L, Li Z J and He S B 2024 Chin. Phys. B 33 028706 [34] Chen M, Luo X F, Suo Y H, Xu Q and Wu H G 2023 Nonlinear Dyn. 111 7773 [35] Njitacke Z T, Awrejcewicz J, Telem A N K, Fozin T F and Kengne J 2023 IEEE Trans. Circuits Syst. Ⅱ, Exp. Briefs 70 791 [36] Wang C H, Tang D, Lin H R, Yu F and Sun Y C 2024 Expert. Syst. Appl. 242 122513 [37] Chen M, Zhang Y C, Wu H G and Xu Q 2025 IEEE Trans. Circuits Syst. I, Reg. Pap. 72 6914 [38] Li Z J, Li Z, He S B, Wang H H and Wu X M 2025 Eur. Phys. J. Spec. Top. [39] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1 [40] Kim C H, Park J, Kim Y J, Park S, Boccaletti S and Kahng B 2025 Chaos Soliton Fractals 196 116281 [41] Jiruska P, Curtis M, Jefferys J G, Schevon C A, Schiff S J and Schindler K 2013 J. Physiol. 591 787 [42] Ding D W, Chen S Q, Yang Z L, Xu X Y, Fan J, Zhu H F and Liu X 2025 Cogn. Neurodyn. 19 102 [43] Shang C X, Sun K H, Wang H H, Yao Z and He S B 2023 Nonlinear Dyn. 111 20347 [44] Li C L, Wang X, Du J R and Li Z J 2023 Nonlinear Dyn. 111 21333 [45] Bao B C, Hu J T, Bao H, Xu Q and Chen M 2024 Cogn. Neurodyn. 18 539 [46] Wang Z, Parastesh F, Rajagopal K, Hamarash I I and Hussain I 2020 Chaos Soliton Fractals 134 109702 [47] Boya B F B A, Muni S S, Echenausía-Monroy J L and Kengne J 2025 Eur. Phys. J. Spec. Top. 234 1735 [48] Chen C J, Bao H, Zhang Y Z, Yu Y, Zhao S and Yang Y 2025 IEEE Trans. Circuits Syst. I, Reg. Pap. 72 4854 [49] Li F Y, Chen Z G, Bao H, Bai L F and Bao B C 2024 Chaos Soliton Fractals 184 115046 [50] Li F Y, Bai L F, Chen Z G and Bao B C 2024 IEEE Trans. Circuits Syst. Ⅱ, Exp. Briefs 71 2354 [51] Ma J 2025 Nonlinear Dyn. 113 25365 [52] Gu Y, Bao H, Yu X H, Hua Z Y, Bao B C and Xu Q 2024 Sci. China Technol. Sci. 67 1855 [53] Zhao Q H, Bao H, Zhang X, Wu H G and Bao B C 2025 Nonlinear Dyn. 113 2747 [54] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193 [55] Li Z J, Zhou H Y, Wang M J and Ma M L 2021 Nonlinear Dyn. 104 1455 [56] Chen X J, Wang N, Wang K, Chen M, Parastesh F and Xu Q 2024 Nonlinear Dyn. 112 20365 [57] Bao H, Xi M Q, Tang H G, Zhang X, Xu Q and Bao B C 2024 IEEE Trans. Ind. Inf. 21 1862 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|