Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010501    DOI: 10.1088/1674-1056/ae1c2c
SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience Prev   Next  

An artificial synapse capable of regulating signal transmission speed in a neuromorphic network

Jingru Sun(孙晶茹)1,†, Xiaosong Li(李晓崧)1, Yichuang Sun(孙义闯)2, Zining Xiong(熊子宁)1, and Jiqi He(何计奇)1
1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;
2 The School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
Abstract  The regulation of signal transmission speed is one of the most important capabilities of the biological nervous system. This study explores the mechanisms and methods for regulating signal transmission speed among nonmyelinated neurons within the same brain region, starting from spike-timing-dependent plasticity (STDP) of synapses. Building upon the Hodgkin-Huxley model, the dynamic behavior of synapses is incorporated, and the adaptive growth neuron (AGN) model is proposed. Artificial synaptic structures and neuronal physical nodes are also designed. The artificial synaptic structure exhibits unidirectionality, memory capacity, and STDP, enabling it to connect neuronal physical nodes through branching and merging structures. Furthermore, the artificial synapse can adjust signal transmission speed, regulate functional competition between different regions of the neuromorphic network, and promote information interaction. The findings of this study endow neuromorphic networks with the ability to regulate signal transmission speed over the long term, providing new insights into the development of neuromorphic networks.
Keywords:  artificial synapse      neuromorphic networks      Hodgkin-Huxley model      neuron circuit      memristor      neurodynamics  
Received:  01 July 2025      Revised:  05 November 2025      Accepted manuscript online:  06 November 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.lg (Synapses: chemical and electrical (gap junctions))  
  87.19.ll (Models of single neurons and networks)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 62171182), the Natural Science Foundation Project of Hunan Province (Grant No. 2025JJ50345), and the Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. CX20240452).
Corresponding Authors:  Jingru Sun     E-mail:  jt_sunjr@hnu.edu.cn

Cite this article: 

Jingru Sun(孙晶茹), Xiaosong Li(李晓崧), Yichuang Sun(孙义闯), Zining Xiong(熊子宁), and Jiqi He(何计奇) An artificial synapse capable of regulating signal transmission speed in a neuromorphic network 2026 Chin. Phys. B 35 010501

[1] Asemi A, Asemi A, Ko A and Alibeigi A 2022 J. Big Data 9 13
[2] Yang S, Wang H, Pang Y, Azghadi M R and Linares-Barranco B 2024 IEEE Trans. Biomed. Circuits Syst. 18 186
[3] Chen J, Park S, Popovski P, Poor H V and Simeone O 2024 IEEE Trans. Signal Process. 72 4635
[4] Greco D, Osborne F, Pusceddu S and Reforgiato Recupero D 2025 J. Big Data 12 64
[5] Courellis H S, Minxha J, Cardenas A R, Kimmel D L, Reed C M, Valiante T A, Salzman C D, Mamelak A N, Fusi S and Rutishauser U 2024 Nature 632 841
[6] Collins K M, Sucholutsky L, Bhatt U, Chandra K, Wong L, Lee M, Zhang C E, Tan Z, Ho M, Mansinghka V, Weller A, Tenenbaum J B and Griffiths T L 2024 Nat. Hum. Behav. 8 1851
[7] Saranirad V, Dora S, McGinnity T M and Coyle D 2025 IEEE Trans. Neural Netw. Learn. Syst. 36 2274
[8] Dorkenwald S, Matsliah A, Sterling A R, et al. 2024 Nature 634 124
[9] Peng H, Xie P, Liu L, et al. 2021 Nature 598 174
[10] Wang J, Meng F, Xu C, Zhang Y, Liang K, Han C, Gao Y, Yu X, Li Z, Zeng X, Ni J, Tan H, Yang J and Ma Y 2024 Nat. Neurosci. 28 161
[11] Andrade-Talavera Y, Fisahn A and Rodríguez-Moreno A 2023 Mol. Psychiatry 28 2177
[12] Li X, Sun J, Sun Y, Wang C, Hong Q, Du S and Zhang J 2024 IEEE Trans. Circuits Syst. I Regul. Pap. 71 2320
[13] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 Nat. Mater. 12 114
[14] Yi W, Tsang K K, Lam S K, Bai X, Crowell J A and Flores E A 2018 Nat. Commun. 9 4661
[15] Li X, Sun J, Ma W, Sun Y, Wang C and Zhang J 2024 IEEE Trans. Consum. Electron. 70 3669
[16] Ham D, Park H, Hwang S and Kim K 2021 Nat. Electron. 4 635
[17] Ma M and Lu Y 2024 Chaos 34 033116
[18] Priyanka T M C, Vignesh D, Gowrisankar A, et al. 2025 Eur. Phys. J. Plus 140 363
[19] Sanjeet S, Sahoo B D and Parhi K K 2024 IEEE Trans. Circuits Syst. Artif. Intell. 1 149
[20] Xiao P, Du S, Wei Z, Hong Q and Wen S 2024 IEEE Trans. Circuits Syst. Artif. Intell. 1 272
[21] Tu H, Luo Y, Zeng K, Wu Y, Zhang L, Zhang B and Zeng Z 2023 Chin. Phys. B 32 107504
[22] Yu F, Su D, He S, Wu Y, Zhang S and Yin H 2025 Chin. Phys. B 34 050502
[23] Peng Y, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J and Qian H 2020 Nature 577 641
[24] Lian X J, Fu J K, Gao Z X, Gu S P and Wang L 2023 Chin. Phys. B 32 017304
[25] Shang C, Sun K and Wang Z H S 2023 Nonlinear Dyn. 111 20347
[26] Zhang W, Gao B, Tang J, Yao P, Yu S, Chang M, Yoo H, Qian H and Wu H 2020 Nat. Electron. 3 371
[27] Ling H, Koutsouras D A, Kazemzadeh S, van de Burgt Y, Yan F and Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307
[28] Lee H, Cho J, Jin M, Lee J H, Lee C, Kim J, Lee J, Shin J C, Yoo J, Lee E and Kim Y S 2024 ACS Nano 18 5383
[29] Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O and Gaiarsa J L 1997 Trends Neurosci. 20 523
[30] Boudkkazi S, Fronzaroli-Molinieres L and Debanne D 2011 J. Physiol. 589 1117
[31] Lin J W and Faber D S 2002 Trends Neurosci. 25 449
[32] Li Y, Gan J, Lin X, Qiu Y, Zhan H and Tian H 2024 IEEEACM Trans. Audio, Speech, Lang. Process. 32 2814
[33] Li S, McLaughlin D W and Zhou D 2023 Commun. Pure Appl. Math. 76 114
[34] Markram H, Lubke J, Frotscher M and Sakmann B 1997 Science 275 213
[35] Bi G Q and Poo M M 1998 J. Neurosci. 18 10464
[36] Debanne D, Gahwiler B H and Thompson S M 1998 J. Physiol. 507 237
[37] Caporale N and Dan Y 2008 Annu. Rev. Neurosci. 31 25
[38] Froemke R, Poo M M and Dan Y 2005 Nature 434 221
[39] Rodríguez-Moreno A and Paulsen O 2008 Nat. Neurosci. 11 744
[40] Li X, Sun J, Sun Y and Zhang J 2024 Nonlinear Dyn. 113 3763
[41] Sun J, Sun J, Li X, Sun Y, Hong Q and Wang C 2025 Nonlinear Dyn. 113 33035
[1] Dynamics analysis and DSP implementation of the Rulkov neuron model with memristive synaptic crosstalk
Yichen Bi(毕毅晨), Jun Mou(牟俊), Herbert Ho-Ching Iu, Nanrun Zhou(周南润), Santo Banerjee, and Suo Gao(高锁). Chin. Phys. B, 2026, 35(1): 010504.
[2] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[3] A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵). Chin. Phys. B, 2025, 34(5): 050503.
[4] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[5] A sound-sensitive neuron incorporating a memristive-ion channel
Xin-Lin Song(宋欣林), Ge Zhang(张鬲), and Fei-Fei Yang(杨飞飞). Chin. Phys. B, 2025, 34(12): 120502.
[6] Brain-inspired memristive pooling method for enhanced edge computing
Wenbin Guo(郭文斌), Zhe Feng (冯哲), Haochen Wang (王昊辰), Zhihao Lin(蔺志豪), Jianxun Zou(邹建勋), Zuyu Xu(徐祖雨), Yunlai Zhu(朱云来), Yuehua Dai (代月花), and Zuheng Wu (吴祖恒). Chin. Phys. B, 2025, 34(12): 127301.
[7] Memristor-coupled dynamics and synchronization in two bi-neuron Hopfield neural networks
Fangyuan Li(李芳苑), Haigang Tang(唐海刚), Yunzhen Zhang(张云贞), Bocheng Bao(包伯成), Hany Hassanin, and Lianfa Bai(柏连发). Chin. Phys. B, 2025, 34(12): 128701.
[8] Sol-gel synthesis and nonvolatile resistive switching behaviors of wurtzite phase ZnO nanofilms
Zhi-Qiang Yu(余志强), Jin-Hao Jia(贾金皓), Mei-Lian Ou(欧梅莲), Tang-You Sun(孙堂友), and Zhi-Mou Xu(徐智谋). Chin. Phys. B, 2025, 34(12): 127302.
[9] Memristive effect on a Hindmarsh-Rose neuron
Fei Gao(高飞), Xiangcheng Yu(于相成), Yue Deng(邓玥), Fang Yuan(袁方), Guangyi Wang(王光义), and Tengfei Lei(雷腾飞). Chin. Phys. B, 2025, 34(12): 120504.
[10] Discrete neuron models and memristive neural network mapping: A comprehensive review
Fei Yu(余飞), Xuqi Wang(王许奇), Rongyao Guo(郭荣垚), Zhijie Ying(应志杰), Yan He(何燕), and Qiong Zou(邹琼). Chin. Phys. B, 2025, 34(12): 120501.
[11] Synchronization of a fractional-order chaotic memristive system and its application to secure image transmission
Lamia Chouchane, Hamid Hamiche, Karim Kemih, Ouerdia Megherbi, and Karim Labadi. Chin. Phys. B, 2025, 34(12): 120509.
[12] Artificial synapse based on Co3O4 nanosheets for high-accuracy pattern recognition
Ying Li(李颖), Xiaofan Zhou(周晓凡), Jiajun Guo(郭家俊), Tong Chen(陈通), Xiaohui Zhang(张晓辉), Xia Xiao(肖夏), Guangyu Wang(王光宇), Mehran Khan Alam, Qi Zhang(张琪), and Liqian Wu(武力乾). Chin. Phys. B, 2025, 34(12): 128101.
[13] Dynamical behavior of ring-star neural networks with small-world characteristics
Minglin Ma(马铭磷), Zhiyi Yuan(袁芷依), Umme Kalsoom, Weizheng Deng(邓为政), and Shaobo He(贺少波). Chin. Phys. B, 2025, 34(10): 100502.
[14] A physical memristor model for Pavlovian associative memory
Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东), and Xiaofang Hu(胡小方). Chin. Phys. B, 2025, 34(1): 018703.
[15] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
No Suggested Reading articles found!