| SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience |
Prev
Next
|
|
|
An artificial synapse capable of regulating signal transmission speed in a neuromorphic network |
| Jingru Sun(孙晶茹)1,†, Xiaosong Li(李晓崧)1, Yichuang Sun(孙义闯)2, Zining Xiong(熊子宁)1, and Jiqi He(何计奇)1 |
1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; 2 The School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK |
|
|
|
|
Abstract The regulation of signal transmission speed is one of the most important capabilities of the biological nervous system. This study explores the mechanisms and methods for regulating signal transmission speed among nonmyelinated neurons within the same brain region, starting from spike-timing-dependent plasticity (STDP) of synapses. Building upon the Hodgkin-Huxley model, the dynamic behavior of synapses is incorporated, and the adaptive growth neuron (AGN) model is proposed. Artificial synaptic structures and neuronal physical nodes are also designed. The artificial synaptic structure exhibits unidirectionality, memory capacity, and STDP, enabling it to connect neuronal physical nodes through branching and merging structures. Furthermore, the artificial synapse can adjust signal transmission speed, regulate functional competition between different regions of the neuromorphic network, and promote information interaction. The findings of this study endow neuromorphic networks with the ability to regulate signal transmission speed over the long term, providing new insights into the development of neuromorphic networks.
|
Received: 01 July 2025
Revised: 05 November 2025
Accepted manuscript online: 06 November 2025
|
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
| |
87.19.lg
|
(Synapses: chemical and electrical (gap junctions))
|
| |
87.19.ll
|
(Models of single neurons and networks)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 62171182), the Natural Science Foundation Project of Hunan Province (Grant No. 2025JJ50345), and the Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. CX20240452). |
Corresponding Authors:
Jingru Sun
E-mail: jt_sunjr@hnu.edu.cn
|
Cite this article:
Jingru Sun(孙晶茹), Xiaosong Li(李晓崧), Yichuang Sun(孙义闯), Zining Xiong(熊子宁), and Jiqi He(何计奇) An artificial synapse capable of regulating signal transmission speed in a neuromorphic network 2026 Chin. Phys. B 35 010501
|
[1] Asemi A, Asemi A, Ko A and Alibeigi A 2022 J. Big Data 9 13 [2] Yang S, Wang H, Pang Y, Azghadi M R and Linares-Barranco B 2024 IEEE Trans. Biomed. Circuits Syst. 18 186 [3] Chen J, Park S, Popovski P, Poor H V and Simeone O 2024 IEEE Trans. Signal Process. 72 4635 [4] Greco D, Osborne F, Pusceddu S and Reforgiato Recupero D 2025 J. Big Data 12 64 [5] Courellis H S, Minxha J, Cardenas A R, Kimmel D L, Reed C M, Valiante T A, Salzman C D, Mamelak A N, Fusi S and Rutishauser U 2024 Nature 632 841 [6] Collins K M, Sucholutsky L, Bhatt U, Chandra K, Wong L, Lee M, Zhang C E, Tan Z, Ho M, Mansinghka V, Weller A, Tenenbaum J B and Griffiths T L 2024 Nat. Hum. Behav. 8 1851 [7] Saranirad V, Dora S, McGinnity T M and Coyle D 2025 IEEE Trans. Neural Netw. Learn. Syst. 36 2274 [8] Dorkenwald S, Matsliah A, Sterling A R, et al. 2024 Nature 634 124 [9] Peng H, Xie P, Liu L, et al. 2021 Nature 598 174 [10] Wang J, Meng F, Xu C, Zhang Y, Liang K, Han C, Gao Y, Yu X, Li Z, Zeng X, Ni J, Tan H, Yang J and Ma Y 2024 Nat. Neurosci. 28 161 [11] Andrade-Talavera Y, Fisahn A and Rodríguez-Moreno A 2023 Mol. Psychiatry 28 2177 [12] Li X, Sun J, Sun Y, Wang C, Hong Q, Du S and Zhang J 2024 IEEE Trans. Circuits Syst. I Regul. Pap. 71 2320 [13] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 Nat. Mater. 12 114 [14] Yi W, Tsang K K, Lam S K, Bai X, Crowell J A and Flores E A 2018 Nat. Commun. 9 4661 [15] Li X, Sun J, Ma W, Sun Y, Wang C and Zhang J 2024 IEEE Trans. Consum. Electron. 70 3669 [16] Ham D, Park H, Hwang S and Kim K 2021 Nat. Electron. 4 635 [17] Ma M and Lu Y 2024 Chaos 34 033116 [18] Priyanka T M C, Vignesh D, Gowrisankar A, et al. 2025 Eur. Phys. J. Plus 140 363 [19] Sanjeet S, Sahoo B D and Parhi K K 2024 IEEE Trans. Circuits Syst. Artif. Intell. 1 149 [20] Xiao P, Du S, Wei Z, Hong Q and Wen S 2024 IEEE Trans. Circuits Syst. Artif. Intell. 1 272 [21] Tu H, Luo Y, Zeng K, Wu Y, Zhang L, Zhang B and Zeng Z 2023 Chin. Phys. B 32 107504 [22] Yu F, Su D, He S, Wu Y, Zhang S and Yin H 2025 Chin. Phys. B 34 050502 [23] Peng Y, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J and Qian H 2020 Nature 577 641 [24] Lian X J, Fu J K, Gao Z X, Gu S P and Wang L 2023 Chin. Phys. B 32 017304 [25] Shang C, Sun K and Wang Z H S 2023 Nonlinear Dyn. 111 20347 [26] Zhang W, Gao B, Tang J, Yao P, Yu S, Chang M, Yoo H, Qian H and Wu H 2020 Nat. Electron. 3 371 [27] Ling H, Koutsouras D A, Kazemzadeh S, van de Burgt Y, Yan F and Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307 [28] Lee H, Cho J, Jin M, Lee J H, Lee C, Kim J, Lee J, Shin J C, Yoo J, Lee E and Kim Y S 2024 ACS Nano 18 5383 [29] Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O and Gaiarsa J L 1997 Trends Neurosci. 20 523 [30] Boudkkazi S, Fronzaroli-Molinieres L and Debanne D 2011 J. Physiol. 589 1117 [31] Lin J W and Faber D S 2002 Trends Neurosci. 25 449 [32] Li Y, Gan J, Lin X, Qiu Y, Zhan H and Tian H 2024 IEEEACM Trans. Audio, Speech, Lang. Process. 32 2814 [33] Li S, McLaughlin D W and Zhou D 2023 Commun. Pure Appl. Math. 76 114 [34] Markram H, Lubke J, Frotscher M and Sakmann B 1997 Science 275 213 [35] Bi G Q and Poo M M 1998 J. Neurosci. 18 10464 [36] Debanne D, Gahwiler B H and Thompson S M 1998 J. Physiol. 507 237 [37] Caporale N and Dan Y 2008 Annu. Rev. Neurosci. 31 25 [38] Froemke R, Poo M M and Dan Y 2005 Nature 434 221 [39] Rodríguez-Moreno A and Paulsen O 2008 Nat. Neurosci. 11 744 [40] Li X, Sun J, Sun Y and Zhang J 2024 Nonlinear Dyn. 113 3763 [41] Sun J, Sun J, Li X, Sun Y, Hong Q and Wang C 2025 Nonlinear Dyn. 113 33035 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|