Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010504    DOI: 10.1088/1674-1056/ae1728
SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience Prev   Next  

Dynamics analysis and DSP implementation of the Rulkov neuron model with memristive synaptic crosstalk

Yichen Bi(毕毅晨)1, Jun Mou(牟俊)1, Herbert Ho-Ching Iu2, Nanrun Zhou(周南润)3, Santo Banerjee4, and Suo Gao(高锁)1,†
1 School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China;
2 School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth 6009, Australia;
3 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
4 Department of Mathematical Sciences, Giuseppe Luigi Lagrange, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
Abstract  The human brain is a complex intelligent system composed of tens of billions of neurons interconnected through synapses, and its intricate network structure has consistently attracted numerous scientists to explore the mysteries of brain functions. However, most existing studies have only verified the biological mimicry characteristics of memristors at the single neuron-synapse level, and there is still a lack of research on memristors simulating synaptic coupling between neurons in multi-neuron networks. Based on this, this paper uses discrete memristors to couple dual discrete Rulkov neurons, and adds synaptic crosstalk between the two discrete memristors to form a neuronal network. A memristor-coupled dual-neuron map, called the Rulkov-memristor-Rulkov (R-M-R) map, is constructed to simulate synaptic connections between neurons in biological tissues. Then, the equilibrium points of the R-M-R map are studied. Subsequently, the effect of parameter variations on the dynamic performance of the R-M-R map is comprehensively analyzed using bifurcation diagram, phase diagram, Lyapunov exponent spectrum (LEs), firing diagram, and spectral entropy (SE) complexity algorithms. In the R-M-R map, diverse categories of periodic, chaotic, and hyperchaotic attractors, as well as different states of firing patterns, can be observed. Additionally, different types of state transitions and coexisting attractors are discovered. Finally, the feasibility of the model in digital circuits is verified using a DSP hardware platform. In this study, the coupling principle of biological neurons is simulated, the chaotic dynamic behavior of the R-M-R map is analyzed, and a foundation is laid for deciphering the complex working mechanisms of the brain.
Keywords:  Rulkov neuron      discrete memristor      firing patterns      synaptic crosstalk      DSP implementation  
Received:  12 August 2025      Revised:  22 October 2025      Accepted manuscript online:  24 October 2025
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Jn (High-dimensional chaos)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62571079), the Technological Innovation Projects in the Field of Artificial Intelligence in Liaoning Province (Grant No. 2023JH26/10300011), the Basic Scientific Research Projects in the Department of Education of Liaoning Province (Grant No. LJ212410152049), and the Liaoning Provincial Science and Technology Plan Joint Project (Grant No. 2025-BSLH-041).
Corresponding Authors:  Suo Gao     E-mail:  gaosuo@dlpu.edu.cn

Cite this article: 

Yichen Bi(毕毅晨), Jun Mou(牟俊), Herbert Ho-Ching Iu, Nanrun Zhou(周南润), Santo Banerjee, and Suo Gao(高锁) Dynamics analysis and DSP implementation of the Rulkov neuron model with memristive synaptic crosstalk 2026 Chin. Phys. B 35 010504

[1] Freeman W J 2000 Journal of Physiology, Paris 94 303
[2] Han B, Zhao F F, Zeng Y and Shen G B 2025 IEEE Transactions on Pattern Analysis and Machine Intelligence 47 240
[3] Yu Z H, Zhu K L, Wang Y and Yang F F 2025 Chaos, Solitons Fractals 194 116233
[4] Boaretto B R R, Manchein C, Prado T L and Lopes S R 2021 Neural Networks 137 97
[5] Ma T, Mou J, Banerjee S and Cao Y H 2023 Chaos, Solitons Fractals 176 114113
[6] Bashkirtseva I, Nasyrova V and Ryashko L 2018 Communications in Nonlinear Science and Numerical Simulation 63 261
[7] Stenzinger R V and Tragtenberg M H R 2025 Chaos 35 013132
[8] Jaimes R R, Huerta C G, Garcıa L J H and Pisarchik A N 2022 Euro. Phys. J. Spec. Top. 231 255
[9] Liang H M, Yu Z Y, Jing Z X, Chai Z J and Wang Y X 2024 Euro. Phys. J. Plus 139 241
[10] Yang F F, Ren L J, Ma J and Zhu Z G 2024 Journal of Zhejiang University-Science A 25 382
[11] Xu Q, Wang Y T, Iu H H C, Wang N and Bao H 2023 IEEE Transactions on Circuits and Systems I-Regular Papers 70 3130
[12] Li C B, Li Y X, Yu W N, Irene M and Christos V 2025 Nonlinear Dyn. 113 3857
[13] Leng X X, Wang X P and Zeng Z G 2024 Chaos, Solitons Fractals 183 114944
[14] Lin H R, Wang C H, Deng Q L, Xu C, Deng Z K and Zhou C 2021 Nonlinear Dyn. 53 959
[15] Bertrand Frederick Boui A Boya, Kengne J, Kenmoe G D and Yves J 2022 Heliyon 8 e11046
[16] Liu B, Peng X A and Li C L 2024 AEU-International Journal of Electronics and Communications 178 155283
[17] Bao B C, Wang Z W, Hua Z Y, Chen M and Bao H 2023 Nonlinear Dyn. 111 13499
[18] Bao H, Wang Z W, Hua Z Y, Yu X H, Xu Q and Bao B C 2024 IEEE Transactions on Industrial Informatics 20 4784
[19] Ma M L, Xie X H, Yang Y, Li Z J and Sun Y C 2023 Chin. Phys. B 32 058701
[20] Mou J, Ma T, Banerjee S and Zhang Y S 2024 IEEE Transactions on Circuits and Systems I-Regular Papers 71 1771
[21] Bao H, Wang R M, Tang H G, Chen M and Bao B C 2025 IEEE Internet of Things Journal 189 20902
[22] Lu J Y, Xie X H, Lu Y P, Wu Y L, Li C L and Ma M L 2024 Chin. Phys. B 33 048701
[23] Ding D W, Niu Y, Zhang H W, Yang Z L, Wang J, Wang W and Wang M Y 2024 Chin. Phys. B 33 050503
[24] Yu F, He S Q, Yao W, Cai S and Xu Q 2025 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 44 4564
[25] Veletic M and Balasingham I 2020 IEEE Transactions on Communications 68 841
[26] Kim D and Lee J S 2022 Advanced Functional Materials 32 2200497
[27] Yu X H, Bao H, Chen M and Bao B C 2023 Chaos, Solitons Fractals 171 113442
[28] Chua Leon 1971 IEEE Transactions on Circuit Theory 18 507
[29] Shi F, Cao Y H, Banerjee S and Mou J 2025 Nonlinear Dyn. 113 12165
[30] Yu F, Tan B H, He T, He S Q, Huang Y Y, Cai S and Lin H R 2025 Mathematics 13 726
[31] Gao S, Ho C I, Herbert, Erkan U, Simsek C, Toktas A, Cao Y H, Wu R, Mou J, Li Q and Wang C P 2025 IEEE Transactions on Circuits and Systems for Video Technology 35 7706
[32] Wu F Q, Guo Y T, and Ma J 2022 Nonlinear Dyn. 109 2063
[33] Gao S, Ding S Q, Ho C I, Herbert, Erkan U, Toktas A, Simsek C, Wu R, Xu X Y, Cao Y H and Mou J 2025 Chaos 35 073105
[34] Yang F F, Song X L and Yu Z H 2025 Nonlinear Dyn. 113 7213
[35] Yu F, Wu C R, Lin Y, He S Q, Yao W, Cai S and Jin J 2024 Nonlinear Dyn. 112 12393
[36] Hong Q H, Zhao L and Wang X P 2019 Neurocomputing 330 11
[37] Gao S, Zhang Z Y, Li Q, Ding S Q, Iu H H C, Cao Y H, Xu X Y, W C P and Mou J 2025 IEEE Transactions on Dependable and Secure Computing 22 8011
[38] Yu F, Su D, He S Q, Wu Y Y, Zhang S K and Yin H G 2025 Chin. Phys. B 34 050502
[39] Lu Y C, Li H M and Li C L 2023 Neurocomputing 544 126246
[40] Huang L L, Jin P P, Zang H Y, Fu H Y, Lei T F and Wang G Y 2025 Chaos, Solitons Fractals 195 116271
[41] Xu Q, Wang Y T, Wu H G, Chen M and Chen B 2024 Chaos, Solitons Fractals 179 114458
[42] Mou J, Cao H L, Zhou N R and Cao Y H 2024 IEEE Transactions on Cybernetics 54 7333
[43] Li H D and Min F H 2024 IEEE Transactions on Industrial Informatics 20 10259
[44] Li H D and Min F H 2025 IEEE Transactions on Circuits and Systems I: Regular Papers 72 4820
[45] Li H D and Min F H 2025 IEEE Internet of Things Journal 12 29018
[46] Zhang S H, Zhang H L, Wang C and Lin H R 2024 Chaos, Solitons Fractals 179 114459
[47] Li Z, Peng C, Wang M and Ma M 2024 Indian Journal of Physics 98 1043
[48] Qiu R, Dong Y J, Jiang X and Wang G Y 2022 Electronics 11 3034
[49] Shrivastava A N, Triller A and Sieghart W 2011 Frontiers in Cellular Neuroscience 5 7
[50] Zhang S H, Zhang H L, Wang C and Lin H R 2024 Chaos, Solitons Fractals 179 114459
[51] Li Z J, C P, Wang M J and Ma M L 2024 Indian Journal of Physics 98 1043
[52] Lai Q and Yang L 2023 Chaos, Solitons Fractals 174 113807
[53] Rulkov N F 2002 Phys. Rev. E 65 041922
[54] Claudio B, Robert J B, Erol B, Katarzyna J B, Andrzej C, Wilhelmus H I M D, Wolfgang K, Robert T K, Fernando L da S, Paul N, Robert O, Jaeseung J, Roberto Pascual-M, Pedro Valdes-S, Mark H 2020 Clinical Neurophysiology 131 285
[55] Phi L G, William O T, Arielle C and Peter W K 2025 Clinical Neurophysiology 171 76
[56] Pijn J P, Van N J, Noest A and Lopes D S F 1991 Electroencephalogr Clin Neurophysiol 79 371
[57] Shao J, Liu Y H, Gao D S, Tu J and Yang F 2021 Frontiers in Cellular Neuroscience 15 741292
[58] Ni Z G, Bouali B R, Gao D M, Benabid A L and Benazzouz A 2001 Brain Research 899 142
[59] Jia B and Gu H G 2017 International Journal of Bifurcation and Chaos 27 1750113
[60] Farmer D G S, Patros M, Ottaviani M M, Dawood T, Kumric M, Bozic J, Badour M I, Bain A R, Barak O F, Dujic Z and Macefield V G 2025 Journal of Physiology-London 603 1941
[61] Yambe T, Asano E, Mauyama S, Shiraishi Y, Shibata M, Sekine K, Watanabe M, Yamaguchi T, Kuwayama T, Konno S and Nitta S 2005 Biomedicine & Pharmacotherapy 59 S236
[62] Fadakar H, Rudra P, Adhikari A, Perera G K, Sirimanne V, Kaur D, Wong H, Yiu K Y, Schweitzer D and Akefe I O 2025 Neuroscience and Biobehavioral Reviews 175 106242
[1] A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵). Chin. Phys. B, 2025, 34(5): 050503.
[2] Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application
Dawei Ding(丁大为), Yan Niu(牛炎), Hongwei Zhang(张红伟), Zongli Yang(杨宗立), Jin Wang(王金), Wei Wang(王威), and Mouyuan Wang(王谋媛). Chin. Phys. B, 2024, 33(5): 050503.
[3] Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
Jieyu Lu(鲁婕妤), Xiaohua Xie(谢小华), Yaping Lu(卢亚平), Yalian Wu(吴亚联), Chunlai Li(李春来), and Minglin Ma(马铭磷). Chin. Phys. B, 2024, 33(4): 048701.
[4] Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波). Chin. Phys. B, 2024, 33(2): 028706.
[5] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来). Chin. Phys. B, 2024, 33(2): 028705.
[6] Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor
Ming-Lin Ma(马铭磷), Xiao-Hua Xie(谢小华), Yang Yang(杨阳), Zhi-Jun Li(李志军), and Yi-Chuang Sun(孙义闯). Chin. Phys. B, 2023, 32(5): 058701.
[7] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[8] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[9] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[10] Dynamics analysis on neural firing patterns by symbolic approach
Gao Zhi-Ying(郜志英) and Lu Qi-Shao(陆启韶). Chin. Phys. B, 2007, 16(8): 2479-2485.
No Suggested Reading articles found!