Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 128101    DOI: 10.1088/1674-1056/ae1817
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Artificial synapse based on Co3O4 nanosheets for high-accuracy pattern recognition

Ying Li(李颖)1, Xiaofan Zhou(周晓凡)1, Jiajun Guo(郭家俊)1,†, Tong Chen(陈通)2,3, Xiaohui Zhang(张晓辉)1, Xia Xiao(肖夏)1, Guangyu Wang(王光宇)1,‡, Mehran Khan Alam4, Qi Zhang(张琪)5, and Liqian Wu(武力乾)6,§
1 School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
2 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
3 Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China;
4 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China;
5 School of Medical Information Engineering, Department of Physics, Jining Medical University, Jining 272067, China;
6 Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China
Abstract  Two-dimensional (2D) metal oxides are promising candidates for constructing neuromorphic systems because of their intriguing physical properties, such as atomic thinness and ionic activity. In this work, Co$_{3}$O$_{4}$ nanosheets were synthesized using a solvothermal method and integrated into artificial synapses. Based on the synaptic plasticity of the Co$_{3}$O$_{4}$ nanosheet-based memristive device, an artificial neural network (ANN) was designed and tested. A recognition accuracy of approximately 96 % was achieved for the Modified National Institute of Standards and Technology (MNIST) handwritten digit classification task using this ANN. These results highlight the potential of Co$_{3}$O$_{4}$ nanosheet-based artificial synapses and Al/Co$_{3}$O$_{4}$ nanosheet/ITO memristor devices as excellent material candidates for neuromorphic hardware.
Keywords:  artificial synapse      memristor      Co3O4 nanosheet      synaptic plasticity  
Received:  22 July 2025      Revised:  22 September 2025      Accepted manuscript online:  28 October 2025
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  84.35.+i (Neural networks)  
  85.35.-p (Nanoelectronic devices)  
  73.40.Rw (Metal-insulator-metal structures)  
Fund: This work was supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2024MA019 and ZR2023QA106) and the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2023C01018).
Corresponding Authors:  Jiajun Guo, Guangyu Wang, Liqian Wu     E-mail:  guojiajun@lcu.edu.cn;wangguangyu@lcu.edu.cn;wulq@hdu.edu.cn
About author:  2025-128101-251257.pdf

Cite this article: 

Ying Li(李颖), Xiaofan Zhou(周晓凡), Jiajun Guo(郭家俊), Tong Chen(陈通), Xiaohui Zhang(张晓辉), Xia Xiao(肖夏), Guangyu Wang(王光宇), Mehran Khan Alam, Qi Zhang(张琪), and Liqian Wu(武力乾) Artificial synapse based on Co3O4 nanosheets for high-accuracy pattern recognition 2025 Chin. Phys. B 34 128101

[1] Merolla P A, Arthur J V, Alvarez-Icaza R, et al. 2014 Science 345 668
[2] Ielmini D and Wong H S P 2018 Nat. Electron. 1 333
[3] Sebastian A, Gallo M L, Khaddam-Aljameh R and Eleftheriou E 2020 Nat. Nanotechnol. 15 529
[4] Liu K, Zhang T, Dang B, Bao L, Xu L, Cheng C, Yang Z, Huang R and Yang Y 2022 Nat. Electron. 5 761
[5] Wang P, Chen M, Xie Y, Pan C, Watanabe K, Taniguchi T, Cheng B, Liang S J and Miao F 2023 Chin. Phys. Lett. 40 117201
[6] Yu Y T and Yang X L 2023 Chin. Phys. B 32 030201
[7] Yang Y, Zhao J, Liu Y, Hua X, Wang T, Zheng J, Hao Z, Xiong B, Sun C and Han Y 2024 Chin. Phys. B 33 030702
[8] Roy K, Jaiswal A and Panda P 2019 Nature 575 607
[9] Zhu J, Zhang T, Yang Y and Huang R 2020 Appl. Phys. Rev. 7 011312
[10] Xia Q and Yang J J 2019 Nat. Mater. 18 309
[11] Zhou Z, Zhao J, Chen A P, Pei Y, Xiao Z, Wang G, Chen J and Yan X 2020 Mater. Horiz. 7 1106
[12] Li J, Qian Y, LiW, Yu S, Ke Y, Qian H, Lin Y, Hou C, Shyue J, Zhou J, Chen Y, Xu J, Zhu J, Yi M and HuangW2023 Adv. Mater. 35 2209728
[13] Tan Z H, Yang R, Terabe K, Yin X B, Zhang X D and Guo X 2016 Adv. Mater. 28 377
[14] Ryu J H and Kim S 2020 Chaos Solitons Fractals 140 110236
[15] Wang J, Teng C, Zhang Z, Chen W, Tan J, Pan Y, Zhang R, Zhou H, Ding B, Cheng H and Liu B 2021 ACS Nano 15 15123
[16] Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Lucio C, Alberto S, van de Burgt Y and Santoro F 2020 Nat. Mater. 19 969
[17] Zhang B, Chen W, Zeng J, Fan F, Gu J, Chen X, Yan L, Xie G, Liu S, Yan Q, Baik S J, Zhang Z G, Chen W, Hou J, El-Khouly M E, Zhang Z, Liu G and Chen Y 2021 Nat. Commun. 12 1984
[18] Zhang K, Wang C, Zhang M, et al. 2020 Nat. Nanotechnol. 15 1019
[19] Han Y, Nickle C, Zhang Z, Astier H P A G, Duffin T J, Qi D, Wang Z, del Barco E, Thompson D and Nijhuis C A 2020 Nat. Mater. 19 843
[20] Zhang Y, Liu L, Tu B, Cui B, Guo J, Zhao X, Wang J and Yan Y 2023 Nat. Commun. 14 247
[21] Xiao Z, Yuan Y, Shao Y,Wang Q, Dong Q, Bi C, Sharma P, Gruverman A and Huang J 2015 Nat. Mater. 14 193
[22] Zhao X, Xu H, Wang Z, Lin Y and Liu Y 2019 InfoMat 1 183
[23] Mao J Y, Zheng Z, Xiong Z Y, Huang P, Ding G L, Wang R,Wang Z P, Yang J Q, Zhou Y, Zhai T and Han S T 2020 Nano Energy 71 104616
[24] Shi Y, Liang X, Yuan B, Chen V, Li H, Hui F, Yu Z, Yuan F, Pop E, Wong H S P and Lanza M 2018 Nat. Electron. 1 458
[25] Huh W, Lee D and Lee C H 2020 Adv. Mater. 32 2002092
[26] Peng Z, Cheng Z, Ke S, Xiao Y, Ye Z, Wang Z, Shi T, Ye C, Wen X, Chu P K, Yu X F and Wang J 2023 Adv. Funct. Mater. 33 2211269
[27] Zhong J, Lin X, Sun H, Wang F, Liu K, Wei J, Li Z, Ji Y, Liu P, Liu W and Zhang K 2024 Appl. Surf. Sci. 678 161050
[28] Zou Y, Kinloch I A and Dryfe R AW2015 ACS Appl. Mater. Interfaces 7 22831
[29] Li J, Li Z, Ning F, Zhou L, Zhang R, Shao M and Wei M 2018 ACS Omega 3 1675
[30] Wang X, Li R, Luo X, Mu J, Peng J, Yan G, Wei P, Tian Z, Huang Z and Cao Z 2024 J. Colloid Interface Sci. 654 454
[31] Younis A, Chu D, Lin X, Lee J and Li S 2013 Nanoscale Res. Lett. 8 36
[32] Zhou K, Shang G, Hsu H H, Han S T, Roy V A L and Zhou Y 2023 Adv. Mater. 35 2207774
[33] Tan C, Liu Z, Huang W and Zhang H 2015 Chem. Soc. Rev. 44 2615
[34] Liao L, Kovalska E, Regner J, Song Q and Sofer Z 2024 Small 20 2303638
[35] Wang J, Gao R, Zhou D, Chen Z, Wu Z, Schumacher G, Hu Z and Liu X 2017 ACS Catal. 7 6533
[36] Chen X, Zhong C, Liu B, Liu Z, Bi X, Zhao N, Han X, Deng Y, Lu J and Hu W 2018 Small 14 1702987
[37] Kaviyarasu K, Raja A and Devarajan P A 2013 Spectrochim. Acta A Mol. Biomol. Spectrosc. 114 586
[38] Mao Y, Li W, Liu P, Chen J and Liang E 2014 Mater. Lett. 134 276
[39] Wu B, Shan C, Zhang X, Zhao H, Ma S, Shi Y, Yang J, Bai H and Liu Q 2021 Appl. Surf. Sci. 543 148677
[40] Kubelka P and Munk F 1931 Tech. Phys. 12 593
[41] Dare-Edwards M P, Goodenough J B, Hamnett A and Trevellick P R 1983 J. Chem. Soc. Faraday Trans. 79 2027
[42] Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L and Tondello E 2001 Chem. Mater. 13 588
[43] Gu F, Li C, Hu Y and Zhang L 2007 J. Cryst. Growth 304 369
[44] He T, Chen D, Jiao X,Wang Y and Duan Y 2005 Chem. Mater. 17 4023
[45] Farhadi S, Safabakhsh J and Zaringhadam P 2013 J. Nanostruct. Chem. 3 1
[46] Shang D S,Wang Q, Chen L D, Dong R, Li X M and ZhangWQ 2006 Phys. Rev. B 73 245427
[47] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[48] Kim S, Han J, Kim H, Kim S and Jang H 2018 Adv. Mater. Technol. 3 1800457
[49] Sassine G, Barbera S, Najjari N, Minvielle M, Dubourdieu C and Alibart F 2016 J. Vac. Sci. Technol. B 34 012202
[50] Guo J, Ren S, Wu L, Kang X, Chen W and Zhao X 2018 Appl. Surf. Sci. 434 1074
[51] Han J, Le Q, Choi J, Kim H, Kim S, Hong K, Moon C, Kim T, Kim S and Jang H 2019 ACS Appl. Mater. Interfaces 11 8155
[52] Song LW, Niu S S, Sun Y C, Hua L F, Zhao X and ChenW2014 Appl. Phys. Lett. 104 093502
[53] Choi J S, Kim J S, Hwang I R, Hong S H, Jeon S H, Kang S O, Park B H, Kim D C, Lee M J and Seo S 2009 Appl. Phys. Lett. 95 022109
[54] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
[55] Peng H Y, Li G P, Ye J Y, Wei Z P, Zhang Z, Wang D D, Xing G Z and Wu T 2010 Appl. Phys. Lett. 96 192113
[56] Zhou C W, Wu C C, Hsu T H and Huang C L 2025 Mater. Sci. Semicond. Process. 185 108937
[57] Nakamura H and Asai Y 2016 Phys. Chem. Chem. Phys. 18 8820
[58] Ismail M, Rasheed M, Park Y, Lee S, Mahata C, Shim W and Kim S 2024 J. Chem. Phys. 161 134702
[1] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[2] A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵). Chin. Phys. B, 2025, 34(5): 050503.
[3] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[4] Discrete neuron models and memristive neural network mapping: A comprehensive review
Fei Yu(余飞), Xuqi Wang(王许奇), Rongyao Guo(郭荣垚), Zhijie Ying(应志杰), Yan He(何燕), and Qiong Zou(邹琼). Chin. Phys. B, 2025, 34(12): 120501.
[5] Synchronization of a fractional-order chaotic memristive system and its application to secure image transmission
Lamia Chouchane, Hamid Hamiche, Karim Kemih,Ouerdia Megherbi, and Karim Labadi. Chin. Phys. B, 2025, 34(12): 120509.
[6] Dynamical behavior of ring-star neural networks with small-world characteristics
Minglin Ma(马铭磷), Zhiyi Yuan(袁芷依), Umme Kalsoom, Weizheng Deng(邓为政), and Shaobo He(贺少波). Chin. Phys. B, 2025, 34(10): 100502.
[7] A physical memristor model for Pavlovian associative memory
Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东), and Xiaofang Hu(胡小方). Chin. Phys. B, 2025, 34(1): 018703.
[8] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[9] One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
Yalin Li(李亚霖), Kailu Shi(时凯璐), Yixin Zhu(朱一新), Xiao Fang(方晓), Hangyuan Cui(崔航源), Qing Wan(万青), and Changjin Wan(万昌锦). Chin. Phys. B, 2024, 33(6): 068401.
[10] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[11] Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application
Dawei Ding(丁大为), Yan Niu(牛炎), Hongwei Zhang(张红伟), Zongli Yang(杨宗立), Jin Wang(王金), Wei Wang(王威), and Mouyuan Wang(王谋媛). Chin. Phys. B, 2024, 33(5): 050503.
[12] Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
Jieyu Lu(鲁婕妤), Xiaohua Xie(谢小华), Yaping Lu(卢亚平), Yalian Wu(吴亚联), Chunlai Li(李春来), and Minglin Ma(马铭磷). Chin. Phys. B, 2024, 33(4): 048701.
[13] Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model
Xinwei Zhou(周新卫), Donghua Jiang(蒋东华), Jean De Dieu Nkapkop, Musheer Ahmad, Jules Tagne Fossi, Nestor Tsafack, and Jianhua Wu(吴建华). Chin. Phys. B, 2024, 33(4): 040506.
[14] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[15] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来). Chin. Phys. B, 2024, 33(2): 028705.
No Suggested Reading articles found!