| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Artificial synapse based on Co3O4 nanosheets for high-accuracy pattern recognition |
| Ying Li(李颖)1, Xiaofan Zhou(周晓凡)1, Jiajun Guo(郭家俊)1,†, Tong Chen(陈通)2,3, Xiaohui Zhang(张晓辉)1, Xia Xiao(肖夏)1, Guangyu Wang(王光宇)1,‡, Mehran Khan Alam4, Qi Zhang(张琪)5, and Liqian Wu(武力乾)6,§ |
1 School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; 2 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; 3 Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China; 4 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China; 5 School of Medical Information Engineering, Department of Physics, Jining Medical University, Jining 272067, China; 6 Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China |
|
|
|
|
Abstract Two-dimensional (2D) metal oxides are promising candidates for constructing neuromorphic systems because of their intriguing physical properties, such as atomic thinness and ionic activity. In this work, Co$_{3}$O$_{4}$ nanosheets were synthesized using a solvothermal method and integrated into artificial synapses. Based on the synaptic plasticity of the Co$_{3}$O$_{4}$ nanosheet-based memristive device, an artificial neural network (ANN) was designed and tested. A recognition accuracy of approximately 96 % was achieved for the Modified National Institute of Standards and Technology (MNIST) handwritten digit classification task using this ANN. These results highlight the potential of Co$_{3}$O$_{4}$ nanosheet-based artificial synapses and Al/Co$_{3}$O$_{4}$ nanosheet/ITO memristor devices as excellent material candidates for neuromorphic hardware.
|
Received: 22 July 2025
Revised: 22 September 2025
Accepted manuscript online: 28 October 2025
|
|
PACS:
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
| |
84.35.+i
|
(Neural networks)
|
| |
85.35.-p
|
(Nanoelectronic devices)
|
| |
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
| Fund: This work was supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2024MA019 and ZR2023QA106) and the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2023C01018). |
Corresponding Authors:
Jiajun Guo, Guangyu Wang, Liqian Wu
E-mail: guojiajun@lcu.edu.cn;wangguangyu@lcu.edu.cn;wulq@hdu.edu.cn
|
| About author: 2025-128101-251257.pdf |
Cite this article:
Ying Li(李颖), Xiaofan Zhou(周晓凡), Jiajun Guo(郭家俊), Tong Chen(陈通), Xiaohui Zhang(张晓辉), Xia Xiao(肖夏), Guangyu Wang(王光宇), Mehran Khan Alam, Qi Zhang(张琪), and Liqian Wu(武力乾) Artificial synapse based on Co3O4 nanosheets for high-accuracy pattern recognition 2025 Chin. Phys. B 34 128101
|
[1] Merolla P A, Arthur J V, Alvarez-Icaza R, et al. 2014 Science 345 668 [2] Ielmini D and Wong H S P 2018 Nat. Electron. 1 333 [3] Sebastian A, Gallo M L, Khaddam-Aljameh R and Eleftheriou E 2020 Nat. Nanotechnol. 15 529 [4] Liu K, Zhang T, Dang B, Bao L, Xu L, Cheng C, Yang Z, Huang R and Yang Y 2022 Nat. Electron. 5 761 [5] Wang P, Chen M, Xie Y, Pan C, Watanabe K, Taniguchi T, Cheng B, Liang S J and Miao F 2023 Chin. Phys. Lett. 40 117201 [6] Yu Y T and Yang X L 2023 Chin. Phys. B 32 030201 [7] Yang Y, Zhao J, Liu Y, Hua X, Wang T, Zheng J, Hao Z, Xiong B, Sun C and Han Y 2024 Chin. Phys. B 33 030702 [8] Roy K, Jaiswal A and Panda P 2019 Nature 575 607 [9] Zhu J, Zhang T, Yang Y and Huang R 2020 Appl. Phys. Rev. 7 011312 [10] Xia Q and Yang J J 2019 Nat. Mater. 18 309 [11] Zhou Z, Zhao J, Chen A P, Pei Y, Xiao Z, Wang G, Chen J and Yan X 2020 Mater. Horiz. 7 1106 [12] Li J, Qian Y, LiW, Yu S, Ke Y, Qian H, Lin Y, Hou C, Shyue J, Zhou J, Chen Y, Xu J, Zhu J, Yi M and HuangW2023 Adv. Mater. 35 2209728 [13] Tan Z H, Yang R, Terabe K, Yin X B, Zhang X D and Guo X 2016 Adv. Mater. 28 377 [14] Ryu J H and Kim S 2020 Chaos Solitons Fractals 140 110236 [15] Wang J, Teng C, Zhang Z, Chen W, Tan J, Pan Y, Zhang R, Zhou H, Ding B, Cheng H and Liu B 2021 ACS Nano 15 15123 [16] Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Lucio C, Alberto S, van de Burgt Y and Santoro F 2020 Nat. Mater. 19 969 [17] Zhang B, Chen W, Zeng J, Fan F, Gu J, Chen X, Yan L, Xie G, Liu S, Yan Q, Baik S J, Zhang Z G, Chen W, Hou J, El-Khouly M E, Zhang Z, Liu G and Chen Y 2021 Nat. Commun. 12 1984 [18] Zhang K, Wang C, Zhang M, et al. 2020 Nat. Nanotechnol. 15 1019 [19] Han Y, Nickle C, Zhang Z, Astier H P A G, Duffin T J, Qi D, Wang Z, del Barco E, Thompson D and Nijhuis C A 2020 Nat. Mater. 19 843 [20] Zhang Y, Liu L, Tu B, Cui B, Guo J, Zhao X, Wang J and Yan Y 2023 Nat. Commun. 14 247 [21] Xiao Z, Yuan Y, Shao Y,Wang Q, Dong Q, Bi C, Sharma P, Gruverman A and Huang J 2015 Nat. Mater. 14 193 [22] Zhao X, Xu H, Wang Z, Lin Y and Liu Y 2019 InfoMat 1 183 [23] Mao J Y, Zheng Z, Xiong Z Y, Huang P, Ding G L, Wang R,Wang Z P, Yang J Q, Zhou Y, Zhai T and Han S T 2020 Nano Energy 71 104616 [24] Shi Y, Liang X, Yuan B, Chen V, Li H, Hui F, Yu Z, Yuan F, Pop E, Wong H S P and Lanza M 2018 Nat. Electron. 1 458 [25] Huh W, Lee D and Lee C H 2020 Adv. Mater. 32 2002092 [26] Peng Z, Cheng Z, Ke S, Xiao Y, Ye Z, Wang Z, Shi T, Ye C, Wen X, Chu P K, Yu X F and Wang J 2023 Adv. Funct. Mater. 33 2211269 [27] Zhong J, Lin X, Sun H, Wang F, Liu K, Wei J, Li Z, Ji Y, Liu P, Liu W and Zhang K 2024 Appl. Surf. Sci. 678 161050 [28] Zou Y, Kinloch I A and Dryfe R AW2015 ACS Appl. Mater. Interfaces 7 22831 [29] Li J, Li Z, Ning F, Zhou L, Zhang R, Shao M and Wei M 2018 ACS Omega 3 1675 [30] Wang X, Li R, Luo X, Mu J, Peng J, Yan G, Wei P, Tian Z, Huang Z and Cao Z 2024 J. Colloid Interface Sci. 654 454 [31] Younis A, Chu D, Lin X, Lee J and Li S 2013 Nanoscale Res. Lett. 8 36 [32] Zhou K, Shang G, Hsu H H, Han S T, Roy V A L and Zhou Y 2023 Adv. Mater. 35 2207774 [33] Tan C, Liu Z, Huang W and Zhang H 2015 Chem. Soc. Rev. 44 2615 [34] Liao L, Kovalska E, Regner J, Song Q and Sofer Z 2024 Small 20 2303638 [35] Wang J, Gao R, Zhou D, Chen Z, Wu Z, Schumacher G, Hu Z and Liu X 2017 ACS Catal. 7 6533 [36] Chen X, Zhong C, Liu B, Liu Z, Bi X, Zhao N, Han X, Deng Y, Lu J and Hu W 2018 Small 14 1702987 [37] Kaviyarasu K, Raja A and Devarajan P A 2013 Spectrochim. Acta A Mol. Biomol. Spectrosc. 114 586 [38] Mao Y, Li W, Liu P, Chen J and Liang E 2014 Mater. Lett. 134 276 [39] Wu B, Shan C, Zhang X, Zhao H, Ma S, Shi Y, Yang J, Bai H and Liu Q 2021 Appl. Surf. Sci. 543 148677 [40] Kubelka P and Munk F 1931 Tech. Phys. 12 593 [41] Dare-Edwards M P, Goodenough J B, Hamnett A and Trevellick P R 1983 J. Chem. Soc. Faraday Trans. 79 2027 [42] Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L and Tondello E 2001 Chem. Mater. 13 588 [43] Gu F, Li C, Hu Y and Zhang L 2007 J. Cryst. Growth 304 369 [44] He T, Chen D, Jiao X,Wang Y and Duan Y 2005 Chem. Mater. 17 4023 [45] Farhadi S, Safabakhsh J and Zaringhadam P 2013 J. Nanostruct. Chem. 3 1 [46] Shang D S,Wang Q, Chen L D, Dong R, Li X M and ZhangWQ 2006 Phys. Rev. B 73 245427 [47] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632 [48] Kim S, Han J, Kim H, Kim S and Jang H 2018 Adv. Mater. Technol. 3 1800457 [49] Sassine G, Barbera S, Najjari N, Minvielle M, Dubourdieu C and Alibart F 2016 J. Vac. Sci. Technol. B 34 012202 [50] Guo J, Ren S, Wu L, Kang X, Chen W and Zhao X 2018 Appl. Surf. Sci. 434 1074 [51] Han J, Le Q, Choi J, Kim H, Kim S, Hong K, Moon C, Kim T, Kim S and Jang H 2019 ACS Appl. Mater. Interfaces 11 8155 [52] Song LW, Niu S S, Sun Y C, Hua L F, Zhao X and ChenW2014 Appl. Phys. Lett. 104 093502 [53] Choi J S, Kim J S, Hwang I R, Hong S H, Jeon S H, Kang S O, Park B H, Kim D C, Lee M J and Seo S 2009 Appl. Phys. Lett. 95 022109 [54] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636 [55] Peng H Y, Li G P, Ye J Y, Wei Z P, Zhang Z, Wang D D, Xing G Z and Wu T 2010 Appl. Phys. Lett. 96 192113 [56] Zhou C W, Wu C C, Hsu T H and Huang C L 2025 Mater. Sci. Semicond. Process. 185 108937 [57] Nakamura H and Asai Y 2016 Phys. Chem. Chem. Phys. 18 8820 [58] Ismail M, Rasheed M, Park Y, Lee S, Mahata C, Shim W and Kim S 2024 J. Chem. Phys. 161 134702 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|