Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050503    DOI: 10.1088/1674-1056/adb8bc
GENERAL Prev   Next  

A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection

Weiping Wu(吴伟平)1,2,†, Mengjiao Wang(王梦蛟)3, and Qigui Yang(杨启贵)2
1 Guangdong Communication Polytechnic, Guangzhou 510000, China;
2 School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China;
3 School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China
Abstract  Since the method of discretizing memristors was proposed, discrete memristors (DMs) have become a very important topic in recent years. However, there has been little research on non-autonomous discrete memristors (NDMs) and their applications. Therefore, in this paper, a new NDM is constructed, and a non-autonomous hyperchaotic map is proposed by connecting this non-autonomous memristor in parallel with an autonomous memristor. This map exhibits complex dynamical behaviors, including infinitely many fixed points, initial-boosted attractors, initial-boosted bifurcations, and the size of the attractors being controlled by the initial value. In addition, a simple pseudo-random number generator (PRNG) was designed using the non-autonomous hyperchaotic map, and the pseudo-random numbers (PRNs) generated by it were tested using the National Institute of Standards and Technology (NIST) SP800-22 test suite. Finally, the non-autonomous hyperchaotic map is implemented on the STM32 hardware experimental platform.
Keywords:  non-autonomous discrete memristors      hyperchaotic map      initials-boosted attractors      initials-boosted bifurcations  
Received:  18 December 2024      Revised:  08 February 2025      Accepted manuscript online:  21 February 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071411).
Corresponding Authors:  Weiping Wu     E-mail:  wpwu_gdcp@qq.com

Cite this article: 

Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵) A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection 2025 Chin. Phys. B 34 050503

[1] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Wang X, Chen X, Zhou J, Liu G, Kang S M, Nandi S K, Elliman R G and Iu H H C 2024 IEEE Trans. Circ. Syst. I Reg. Papers 71 4560
[4] Wang X, Zhou J, Dong C, Jin C, Eshraghian J K, Iu H H C and Kang S M 2024 Nonlinear Dyn. 112 7583
[5] Wang X Y, Zhou P F, Eshraghian J K, Lin C Y, Iu H H C, Chang T C and Kang S M 2020 IEEE Trans. Circ. Syst. I Reg. Papers 68 264
[6] Ma X, Mou J, Xiong L, Banerjee S, Cao Y and Wang J 2021 Chaos Soliton. Fract. 152 111363
[7] Lai Q, Wan Z, Kuate P D K and Fotsin H 2020 Commun. Nonlinear Sci. Num. Simul. 89 105341
[8] Li C, Min F and Li C 1963 Nonlinear Dyn. 94 2785
[9] Wang N, Zhang G and Bao H 2019 Nonlinear Dyn. 97 1477
[10] Chen M, Yu J and Bao B C 2015 Electron. Lett. 51 462
[11] Zhang S, Li C, Zheng J,Wang X, Zeng Z and Chen G 2021 IEEE Trans. Circ. Syst. I Reg. Papers 68 4945
[12] Chen M, Li M, Yu Q, Bao B, Xu Q and Wang J 2015 Nonlinear Dyn. 81 215
[13] Wang N, Cui M, Yu X, Shan Y and Xu Q 2023 Chaos Soliton. Fract. 177 114242
[14] Wang X, Gao M, Iu H H C andWang C 2022 Chaos Soliton. Fract. 159 112177
[15] Guo M, Yang W, Xue Y, Gao Z, Yuan F, Dou G and Li Y 2019 Chaos 29 043114
[16] Yuan F, Wang G and Wang X 2016 Chaos 26 073107
[17] Yu F, Lin Y, Yao W, Cai S, Lin H and Li Y 2024 Neural Netw. 182 106904
[18] Kong X, Yu F, Yao W, Cai S, Zhang J and Lin H 2024 Neural Netw. 171 85
[19] Wang X, Yu J, Jin C, Iu H H C and Yu S 2019 Nonlinear Dyn. 96 161
[20] Wu H G, Ye Y, Bao B C, Chen M and Xu Q 2019 Chaos Soliton. Fract. 121 178
[21] Toktas F, Erkan U and Yetgin Z 2024 Expert Syst. Appl. 249 123583
[22] Toktas A, Erkan U, Ustun D and Lai Q 2024 IEEE Trans. Syst. Man, Cybern. Syst. 54 5237
[23] Wang M J and Gu L 2024 Chin. Phys. B 33 020504
[24] Wang
[25] Erkan U, Toktas A, Memis S, Toktas F, Lai Q, Wen H and Gao S 2024 IEEE Internet Things J. 11 35113
[26] Kocak O, Erkan U, Toktas A and Gao S 2024 Expert Syst. Appl. 237 121452
[27] Toktas A, Erkan U, Gao S and Pak C 2024 Appl. Math. Comput. 462 128340
[28] He S, Sun K, Peng Y and Wang L 2020 AIP Adv. 10 015332
[29] Bao B C, Li H Z, Zhu L, Zhang X and Chen M 2020 Chaos 30 033107
[30] Li Q, Hu S, Tang S and Zeng G 2014 Int. J. Circ. Theor. Appl. 42 1172
[31] Bao H, Gu Y, Xu Q, Zhang X and Bao B 2022 Chaos Soliton. Fract. 160 112273
[32] Li H, Hua Z, Bao H, Zhu L, Chen M and Bao B 2021 IEEE Trans. Industr. Electron. 68 9931
[33] Peng Y, Sun K and He S 2020 Chaos Soliton. Fract. 137 109873
[34] Gu Y, Bao, H, Xu Q, Zhang X and Bao B 2023 IEEE Trans. Circuits Syst. II Exp. Briefs 70 3109
[35] Lai Q, Yang L and Liu Y 2022 Chaos Soliton. Fract. 165 112781
[36] Deng Y and Li Y 2021 Chaos Soliton. Fract. 150 111064
[37] Wang M, An M, Zhang X and Iu H H C 2023 IEEE Trans. Circuits Syst. II Exp. Briefs 70 4251
[38] Bao H, Hua Z, Li H, Chen M and Bao B 2021 IEEE Trans. Circ. Syst. I Reg. Papers 68 4534
[39] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, James D and San V 2010 Nat. Inst. Standards Technol., Gaithersburg, MD, USA, Special Publication 800-22 Revision 1a
[40] Njitacke Z T, Tsafack N, Ramakrishnan B, Rajagopal K, Kengne J and Awrejcewicz J 2021 Chaos Soliton. Fract. 153 111577
[41] Njitacke Z T, Koumetio B N, Ramakrishnan B, Leutcho G D, Fozin T F, Tsafack N, Rajagopal K and Kengne J 2022 Cogn. Neurodyn. 16 899
[1] A novel approach to visual image encryption: 2D hyperchaos, variable Josephus, and 3D diffusion
Yan Hong(洪炎), Xinyan Duan(段心妍), Jingming Su(苏静明), Zhaopan Wang(王昭盼), and Shihui Fang(方士辉). Chin. Phys. B, 2025, 34(4): 040504.
[2] Hybrid image encryption scheme based on hyperchaotic map with spherical attractors
Zhitang Han(韩智堂), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2025, 34(3): 030503.
[3] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[4] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
No Suggested Reading articles found!