A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平)1,2,†, Mengjiao Wang(王梦蛟)3, and Qigui Yang(杨启贵)2
1 Guangdong Communication Polytechnic, Guangzhou 510000, China; 2 School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China; 3 School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China
Abstract Since the method of discretizing memristors was proposed, discrete memristors (DMs) have become a very important topic in recent years. However, there has been little research on non-autonomous discrete memristors (NDMs) and their applications. Therefore, in this paper, a new NDM is constructed, and a non-autonomous hyperchaotic map is proposed by connecting this non-autonomous memristor in parallel with an autonomous memristor. This map exhibits complex dynamical behaviors, including infinitely many fixed points, initial-boosted attractors, initial-boosted bifurcations, and the size of the attractors being controlled by the initial value. In addition, a simple pseudo-random number generator (PRNG) was designed using the non-autonomous hyperchaotic map, and the pseudo-random numbers (PRNs) generated by it were tested using the National Institute of Standards and Technology (NIST) SP800-22 test suite. Finally, the non-autonomous hyperchaotic map is implemented on the STM32 hardware experimental platform.
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵) A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection 2025 Chin. Phys. B 34 050503
[1] Chua L 1971 IEEE Trans. Circuit Theory 18 507 [2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80 [3] Wang X, Chen X, Zhou J, Liu G, Kang S M, Nandi S K, Elliman R G and Iu H H C 2024 IEEE Trans. Circ. Syst. I Reg. Papers 71 4560 [4] Wang X, Zhou J, Dong C, Jin C, Eshraghian J K, Iu H H C and Kang S M 2024 Nonlinear Dyn. 112 7583 [5] Wang X Y, Zhou P F, Eshraghian J K, Lin C Y, Iu H H C, Chang T C and Kang S M 2020 IEEE Trans. Circ. Syst. I Reg. Papers 68 264 [6] Ma X, Mou J, Xiong L, Banerjee S, Cao Y and Wang J 2021 Chaos Soliton. Fract. 152 111363 [7] Lai Q, Wan Z, Kuate P D K and Fotsin H 2020 Commun. Nonlinear Sci. Num. Simul. 89 105341 [8] Li C, Min F and Li C 1963 Nonlinear Dyn. 94 2785 [9] Wang N, Zhang G and Bao H 2019 Nonlinear Dyn. 97 1477 [10] Chen M, Yu J and Bao B C 2015 Electron. Lett. 51 462 [11] Zhang S, Li C, Zheng J,Wang X, Zeng Z and Chen G 2021 IEEE Trans. Circ. Syst. I Reg. Papers 68 4945 [12] Chen M, Li M, Yu Q, Bao B, Xu Q and Wang J 2015 Nonlinear Dyn. 81 215 [13] Wang N, Cui M, Yu X, Shan Y and Xu Q 2023 Chaos Soliton. Fract. 177 114242 [14] Wang X, Gao M, Iu H H C andWang C 2022 Chaos Soliton. Fract. 159 112177 [15] Guo M, Yang W, Xue Y, Gao Z, Yuan F, Dou G and Li Y 2019 Chaos 29 043114 [16] Yuan F, Wang G and Wang X 2016 Chaos 26 073107 [17] Yu F, Lin Y, Yao W, Cai S, Lin H and Li Y 2024 Neural Netw. 182 106904 [18] Kong X, Yu F, Yao W, Cai S, Zhang J and Lin H 2024 Neural Netw. 171 85 [19] Wang X, Yu J, Jin C, Iu H H C and Yu S 2019 Nonlinear Dyn. 96 161 [20] Wu H G, Ye Y, Bao B C, Chen M and Xu Q 2019 Chaos Soliton. Fract. 121 178 [21] Toktas F, Erkan U and Yetgin Z 2024 Expert Syst. Appl. 249 123583 [22] Toktas A, Erkan U, Ustun D and Lai Q 2024 IEEE Trans. Syst. Man, Cybern. Syst. 54 5237 [23] Wang M J and Gu L 2024 Chin. Phys. B 33 020504 [24] Wang [25] Erkan U, Toktas A, Memis S, Toktas F, Lai Q, Wen H and Gao S 2024 IEEE Internet Things J. 11 35113 [26] Kocak O, Erkan U, Toktas A and Gao S 2024 Expert Syst. Appl. 237 121452 [27] Toktas A, Erkan U, Gao S and Pak C 2024 Appl. Math. Comput. 462 128340 [28] He S, Sun K, Peng Y and Wang L 2020 AIP Adv. 10 015332 [29] Bao B C, Li H Z, Zhu L, Zhang X and Chen M 2020 Chaos 30 033107 [30] Li Q, Hu S, Tang S and Zeng G 2014 Int. J. Circ. Theor. Appl. 42 1172 [31] Bao H, Gu Y, Xu Q, Zhang X and Bao B 2022 Chaos Soliton. Fract. 160 112273 [32] Li H, Hua Z, Bao H, Zhu L, Chen M and Bao B 2021 IEEE Trans. Industr. Electron. 68 9931 [33] Peng Y, Sun K and He S 2020 Chaos Soliton. Fract. 137 109873 [34] Gu Y, Bao, H, Xu Q, Zhang X and Bao B 2023 IEEE Trans. Circuits Syst. II Exp. Briefs 70 3109 [35] Lai Q, Yang L and Liu Y 2022 Chaos Soliton. Fract. 165 112781 [36] Deng Y and Li Y 2021 Chaos Soliton. Fract. 150 111064 [37] Wang M, An M, Zhang X and Iu H H C 2023 IEEE Trans. Circuits Syst. II Exp. Briefs 70 4251 [38] Bao H, Hua Z, Li H, Chen M and Bao B 2021 IEEE Trans. Circ. Syst. I Reg. Papers 68 4534 [39] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, James D and San V 2010 Nat. Inst. Standards Technol., Gaithersburg, MD, USA, Special Publication 800-22 Revision 1a [40] Njitacke Z T, Tsafack N, Ramakrishnan B, Rajagopal K, Kengne J and Awrejcewicz J 2021 Chaos Soliton. Fract. 153 111577 [41] Njitacke Z T, Koumetio B N, Ramakrishnan B, Leutcho G D, Fozin T F, Tsafack N, Rajagopal K and Kengne J 2022 Cogn. Neurodyn. 16 899
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.