Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 120701    DOI: 10.1088/1674-1056/ae0d55
SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience Prev   Next  

Optimized PID neural network closed-loop control for basal ganglia network in Parkinson’s disease

Hengxi Zhang(张恒熙)1,2, Honghui Zhang(张红慧)1,2,†, Shuang Liu(柳爽)3, and Lin Du(都琳)1,2
1 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China;
2 MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an 710129, China;
3 Shanghai Engineering Research Center of Physical Vapor Deposition (PVD) Superhard Coating and Equipment, Shanghai Institute of Technology, Shanghai 201418, China
Abstract  Conventional open-loop deep brain stimulation (DBS) systems with fixed parameters fail to accommodate inter-individual pathological differences in Parkinson’s disease (PD) management while potentially inducing adverse effects and causing excessive energy consumption. In this paper, we present an adaptive closed-loop framework integrating a Yogi-optimized proportional-integral-derivative neural network (Yogi-PIDNN) controller. The Yogi-augmented gradient adaptation mechanism accelerates the convergence of general PIDNN controllers in high-dimensional nonlinear control systems while reducing control energy usage. In addition, a system identification method establishes input-output dynamics for pre-training stimulation waveforms, bypassing real-time parameter-tuning constraints and thereby enhancing closed-loop adaptability. Finally, a theoretical analysis based on Lyapunov stability criteria establishes a sufficient condition for closed-loop stability within the identified model. Computational validations demonstrate that our approach restores thalamic relay reliability while reducing energy consumption by (81.0 ±0.7)% across multi-frequency tests. This study advances adaptive neuromodulation by synergizing data-driven pre-training with stability-guaranteed real-time control, offering a novel framework for energy-efficient and personalized Parkinson’s therapy.
Keywords:  Parkinson’s disease      closed-loop deep brain stimulation      PID neural network      adaptive control  
Received:  11 July 2025      Revised:  29 September 2025      Accepted manuscript online:  30 September 2025
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  87.19.lj (Neuronal network dynamics)  
  87.19.lr (Control theory and feedback)  
  87.85.dq (Neural networks)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12372064 and 12172291) and the Youth and Middle-Aged Science and Technology Development Program of Shanghai Institute of Technology (Grant No. ZQ2024-10).
Corresponding Authors:  Honghui Zhang     E-mail:  haozhucy@nwpu.edu.cn

Cite this article: 

Hengxi Zhang(张恒熙), Honghui Zhang(张红慧), Shuang Liu(柳爽), and Lin Du(都琳) Optimized PID neural network closed-loop control for basal ganglia network in Parkinson’s disease 2025 Chin. Phys. B 34 120701

[1] Benabid A L 2003 Curr. Opin. Neurobiol. 13 696
[2] Okun M S 2012 N. Engl. J. Med. 367 1529
[3] Hariz M and Blomstedt P 2022 J. Intern. Med. 292 764
[4] Limousin P and Foltynie T 2019 Nat. Rev. Neurol. 15 234
[5] Lozano A M, Lipsman N, Bergman H, et al. 2019 Nat. Rev. Neurol. 15 148
[6] Guidetti M, Marceglia S, Loh A, Harmsen I E, Meoni S, Foffani G, Lozano A M, Moro E, Volkmann J and Priori A 2021 Brain Stimul. 14 1238
[7] Bouthour W, Mégevand P, Donoghue J, Lüscher C, Birbaumer N and Krack P 2019 Nat. Rev. Neurol. 15 343
[8] Krauss J K, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill W M, Hariz M I and Horn A 2021 Nat. Rev. Neurol. 17 75
[9] Rosa M, Arlotti M, Ardolino G, Cogiamanian F, Marceglia S, Di Fonzo A, Cortese F, Rampini P M and Priori A 2015 Mov. Disord. 30 1003
[10] Gorzelic P, Schiff S and Sinha A 2013 J. Neural Eng. 10 026016
[11] Chen L, Jiang W, Bin D, et al. 2016 IEEE Trans. Neural Syst. Rehabil. Eng. 24 1109
[12] Coronel-Escamilla A, Gomez-Aguilar J F, Stamova I and Santamaria F 2020 Chaos Solitons Fractals 140 110149
[13] Liu C, Zhao G, Meng Z, et al. 2021 Cogn. Neurodyn. 15 1157
[14] Fleming J E, Dunn E and Lowery M M 2020 Front. Neurosci. 14 166
[15] Shu H and Pi Y 2000 Comput. Chem. Eng. 24 859
[16] Zeng G Q, Xie X Q, ChenMR andWeng J 2019 Swarm Evol. Comput. 44 320
[17] Ding J, WuMand XiaoM2022 IEEE Trans. Neural Netw. Learn. Syst. 35 8715
[18] Psaltis D, Sideris A and Yamamura A A 1988 IEEE Control Syst. Mag. 8 17
[19] Yang H and Liu J 2018 IEEECAA J. Autom. Sin. 5 457
[20] Liu Y J, Zeng Q, Tong S, Chen C P and Liu L 2019 IEEE Trans. Ind. Electron. 66 9458
[21] Liu Y J, Zhao W, Liu L, Li D, Tong S and Chen C P 2021 IEEE Trans. Neural Netw. Learn. Syst. 34 2732
[22] Khan S, Khan F, Sikander Q U A, Alam M M and Su’Ud M M 2021 IEEE Access 9 136929
[23] Liu C, Zhao G, Wang J, Wu H, Li H, Fietkiewicz C and Loparo K A 2020 IEEE Access 8 161067
[24] Wang K, Wang J, Zhu Y, Li H, Liu C, Fietkiewicz C and Loparo K A 2022 Biomed. Signal Process. Control 77 103776
[25] Zaheer M, Reddi S, Sachan D, Kale S and Kumar S 2018 Adv. Neural Inf. Process. Syst. 31
[26] Kingma D P 2014 arXiv:1412.6980
[27] Abdulkadirov R, Lyakhov P, Bergerman M and Reznikov D 2024 Chaos Solitons Fractals 179 114432
[28] Chang Z, Zhang Y and Chen W 2019 Energy 187 115804
[29] Böttcher L, Antulov-Fantulin N and Asikis T 2022 Nat. Commun. 13 333
[30] So R Q, Kent A R and Grill W M 2012 J. Comput. Neurosci. 32 499
[31] Terman D, Rubin J E, Yew A and Wilson C 2002 J. Neurosci. 22 2963
[32] Rubin J E and Terman D 2004 J. Comput. Neurosci. 16 211
[33] Liu C, Wang J, Li H, Lu M, Deng B, Yu H, Wei X, Fietkiewicz C and Loparo K A 2016 IEEE Trans. Neural Netw. Learn. Syst. 28 371
[34] Schiff S J 2010 Philos. Trans. R. Soc. A 368 2269
[35] Lu M, Wei X, Che Y, Wang J and Loparo K A 2019 IEEE Trans. Neural Syst. Rehabil. Eng. 28 339
[36] Feng X J, Shea-Brown E, Greenwald B, Kosut R and Rabitz H 2007 J. Comput. Neurosci. 23 265
[37] Lin N, Chi R and Huang B 2020 Appl. Math. Model. 81 787
[38] Glorot X and Bengio Y 2010 Proc. 13th Int. Conf. Artif. Intell. Stat. (JMLR Workshop and Conference Proceedings) pp. 249–256
[39] Birdno M J and Grill W M 2008 Neurotherapeutics 5 14
[40] Zhao T, Faustino B L, Jagatheesaperumal S K, Rolim F d P S and de Albuquerque V H C 2025 Expert Syst. Appl. 267 126154
[41] Holgado A J N, Terry J R and Bogacz R 2010 J. Neurosci. 30 12340
[42] Liu C, Wang J, Yu H, Deng B, Wei X, Li H, Loparo K A and Fietkiewicz C 2015 Commun. Nonlinear Sci. Numer. Simul. 28 10
[43] Yu Y, Wang X, Wang Q and Wang Q 2020 Appl. Math. Mech. 41 1747
[44] Kumaravelu K, Brocker D T and GrillWM 2016 J. Comput. Neurosci. 40 207
[45] Yu Y and Wang Q 2019 Nonlinear Dyn. 98 1065
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[3] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[4] Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Ning Bin (宁滨), Roberts Clive, Chen Lei (陈磊), Sun Xu-Bin (孙绪彬). Chin. Phys. B, 2015, 24(9): 090506.
[5] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
Wang Qiao (王乔), Ding Dong-Sheng (丁冬生), Qi Dong-Lian (齐冬莲). Chin. Phys. B, 2015, 24(6): 060508.
[6] Synchronization of coupled chaotic Hindmarsh Rose neurons: An adaptive approach
Wei Wei (魏伟). Chin. Phys. B, 2015, 24(10): 100503.
[7] Neural adaptive chaotic control with constrained input using state and output feedback
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Sun Xu-Bin (孙绪彬), Ning Bin (宁滨). Chin. Phys. B, 2015, 24(1): 010501.
[8] Static and adaptive feedback control for synchronization of different chaotic oscillators with mutually Lipschitz nonlinearities
Muhammad Riaz, Muhammad Rehan, Keum-Shik Hong, Muhammad Ashraf, Haroon Ur Rasheed. Chin. Phys. B, 2014, 23(11): 110502.
[9] Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance
Wang Shu-Guo (王树国), Zheng Song (郑松). Chin. Phys. B, 2013, 22(7): 070503.
[10] Generalized projective synchronization of two coupled complex networks with different sizes
Li Ke-Zan (李科赞), He En (何恩), Zeng Zhao-Rong (曾朝蓉), Chi K. Tse (谢智刚). Chin. Phys. B, 2013, 22(7): 070504.
[11] Adaptive synchronization control of coupled chaotic neurons in the external electrical stimulation
Yu Hai-Tao (于海涛), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Chen Ying-Yuan (陈颖源). Chin. Phys. B, 2013, 22(5): 058701.
[12] Adaptive control of bifurcation and chaos in a time-delayed system
Li Ning (李宁), Yuan Hui-Qun (袁惠群), Sun Hai-Yi (孙海义), Zhang Qing-Ling (张庆灵). Chin. Phys. B, 2013, 22(3): 030508.
[13] A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
Zhang Ruo-Xun (张若洵), Yang Shi-Ping (杨世平). Chin. Phys. B, 2012, 21(8): 080505.
[14] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping(杨世平) . Chin. Phys. B, 2012, 21(3): 030505.
[15] Stochastic synchronization for time-varying complex dynamical networks
Guo Xiao-Yong(郭晓永) and Li Jun-Min(李俊民) . Chin. Phys. B, 2012, 21(2): 020501.
No Suggested Reading articles found!