Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 070501    DOI: 10.1088/1674-1056/26/7/070501
GENERAL Prev   Next  

Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control

Xiang Zhang(张翔)1, Jin-Huan Wang(王金环)1, De-Dong Yang(杨德东)2, Yong Xu(徐勇)1
1 School of Sciences, Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, Tianjin 300401, China;
2 School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  We investigate the tracking control for a class of nonlinear heterogeneous leader–follower multi-agent systems (MAS) with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers are proposed for the followers to estimate the position and velocity of the leader. Then, two novel distributed adaptive control laws are designed by means of linear sliding mode (LSM) as well as nonsingular terminal sliding mode (NTSM), respectively. One can prove that the tracking consensus can be achieved asymptotically under LSM and the tracking error can converge to a quite small neighborhood of the origin in finite time by NTSM in spite of uncertainties and disturbances. Finally, a simulation example is given to verify the effectiveness of the obtained theoretical results.
Keywords:  multi-agent systems      tracking consensus      distributed adaptive control      sliding mode  
Received:  16 January 2017      Revised:  14 March 2017      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
  02.30.Hq (Ordinary differential equations)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61203142) and the Natural Science Foundation of Hebei Province,China (Grant Nos.F2014202206 and F2017202009).
Corresponding Authors:  Jin-Huan Wang     E-mail:  wjhuan228@163.com

Cite this article: 

Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇) Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control 2017 Chin. Phys. B 26 070501

[1] Meng Z Y, Ren W and You Z 2010 Automatica 46 2092
[2] Jiang Z X, Cui B T, Lou X Y and Zhuang B 2017 Chin. Phys. B 26 040201
[3] Li S H and Wang X Y 2013 Automatica 49 3359
[4] Cao Y C, Ren W and Meng Z Y 2010 Syst. Control Lett. 59 522
[5] Guo L X, Ling Z H, Yuan Y F and Gao C 2014 Chin. Phys. B 23 050508
[6] Hong Y G, Chen G R and Bushnell L 2008 Automatica 44 846
[7] Hu J P and Hong Y G 2007 Physica A 374 853
[8] Olfati-Saber R and Murray R M 2004 IEEE Trans. Auto. Control 49 1520
[9] Su H S, Chen G R, Wang X F and Lin Z L 2011 Automatica 47 368
[10] Yu W W, Chen G R, Cao M and Kurths J 2010 IEEE Trans. Syst. 40 881
[11] Ren C E and Phillp Chen C L 2015 IET Control Theory Appl. 9 1544
[12] Yang H Y, Zhang Z X and Zhang S Y 2011 Int. J. Robust Nonlin. 21 945
[13] Yang H Y, Guo L and Zou H L 2012 Int. J. Control 10 797
[14] Liu W, Liu A L and Zhou S L 2015 Chin. Phys. B 24 090208
[15] Zhang Y J, Yang Y, Zhao Y and Wen G H 2013 Int. J. Control 86 29
[16] Chen G, Yue Y Y and Song Y D 2013 IET Control Theory Appl. 7 1487
[17] Li S H, Du H B and Lin X Z 2011 Automatica 47 1706
[18] Yu S H and Long X J 2015 Automatica 54 158
[19] He X Y, Wang Q Y and Yu W W 2015 Appl. Math. Comput. 268 509
[20] Qu M Y, Du H B and Li S H 2012 J. Frankl. Inst. 349 2834
[21] Zhao D, Zou T, Li S Y and Zhu Q S 2012 IET Control Theory Appl. 6 1109
[22] Wu S S, Wu Z H, Peng L and Xie L B 2017 Chin. Phys. B 26 018903
[23] Wang N, Wu Z H and Peng L 2014 Chin. Phys. B 23 0108901
[24] Liu Y and Jia Y M 2010 Int. J. Robust Nonlin. 20 1579
[25] Zhao L and Jia Y M 2014 Nonlinear Dyn. 78 2279
[26] Zhao L and Jia Y M 2015 J. Frankl. Inst. 352 5327
[27] Wang J H, Liu Z X and Hu X M 2014 J. Syst. Sci. Complex 27 237
[28] Hong Y G, Hu J P and Gao L X 2006 Automatica 42 1177
[29] Jiao X H and Guan X P 2008 Analysis and Design of Nonlinear Systems (Beijing:Publishing house of elecronics industry) pp. 38–39 (in Chinese)
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[5] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[6] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[7] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[8] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[9] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[10] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[11] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[12] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[13] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[14] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[15] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
No Suggested Reading articles found!