Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 120702    DOI: 10.1088/1674-1056/ae172a
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

MaterialsGalaxy: A platform fusing experimental and theoretical data in condensed matter physics

Tiannian Zhu(朱天念)1,2, Zhong Fang(方忠)1,2, Quansheng Wu(吴泉生)1,2,†, and Hongming Weng(翁红明)1,2,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Modern materials science generates vast and diverse datasets from both experiments and computations, yet these multi-source, heterogeneous data often remain disconnected in isolated “silos”. Here, we introduce MaterialsGalaxy, a comprehensive platform that deeply fuses experimental and theoretical data in condensed matter physics. Its core innovation is a structure similarity-driven data fusion mechanism that quantitatively links cross-modal records—spanning diffraction, crystal growth, computations, and literature—based on their underlying atomic structures. The platform integrates artificial intelligence (AI) tools, including large language models (LLMs) for knowledge extraction, generative models for crystal structure prediction, and machine learning property predictors, to enhance data interpretation and accelerate materials discovery. We demonstrate that MaterialsGalaxy effectively integrates these disparate data sources, uncovering hidden correlations and guiding the design of novel materials. By bridging the long-standing gap between experiment and theory, MaterialsGalaxy provides a new paradigm for data-driven materials research and accelerates the discovery of advanced materials.
Keywords:  MaterialsGalaxy      data fusion      materials gene      materials database  
Received:  16 September 2025      Revised:  19 October 2025      Accepted manuscript online:  24 October 2025
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.15.-m (Methods of electronic structure calculations)  
  61.05.cc (Theories of x-ray diffraction and scattering)  
Fund: This work was supported by the Science Center of the National Natural Science Foundation of China (Grant No. 12188101), the National Natural Science Foundation of China (Grant Nos. 12274436 and 11921004), the National Key R&D Program of China (Grant Nos. 2023YFA1607400 and 2022YFA1403800), H.W. acknowledges support from the New Cornerstone Science Foundation through the XPLORER PRIZE.
Corresponding Authors:  Quansheng Wu, Hongming Weng     E-mail:  quansheng.wu@iphy.ac.cn;hmweng@iphy.ac.cn

Cite this article: 

Tiannian Zhu(朱天念), Zhong Fang(方忠), Quansheng Wu(吴泉生), and Hongming Weng(翁红明) MaterialsGalaxy: A platform fusing experimental and theoretical data in condensed matter physics 2025 Chin. Phys. B 34 120702

[1] Zagorac D, Muller H, Ruehl S, Zagorac J and Rehme S 2019 Journal of Applied Crystallography 52 918
[2] Grazulis S, Chateigner D, Downs R T, Yokochi A F T, Quiros M, Lut-terotti L, Manakova E, Butkus J, Moeck P and Le Bail A 2009 Journal of Applied Crystallography 42 726
[3] Grazulis S, Da skevic A, Merkys A, Chateigner D, Lutterotti L, Quiros M, Serebryanaya N R, Moeck P, Downs R T and Le Bail A 2012 Nucleic Acids Research 40 D420
[4] Groom C R, Bruno I J, Lightfoot M P and Ward S C 2016 Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 72 171
[5] Villars P, Berndt M, Brandenburg K, Cenzual K, Daams J, Hulliger F, Massalski T, Okamoto H, Osaki K, Prince A, Putz H and Iwata S 2004 J. Alloys Compd. 367 293
[6] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Materials 1 011002
[7] Curtarolo S, Setyawan W, Hart G L W, Jahnatek M, Chepulskii R V, Taylor R H, Wang S, Xue J, Yang K, Levy O, Mehl M J, Stokes H T, Demchenko D O and Morgan D 2012 Computational Materials Science 58 218
[8] Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Ruhl S and Wolverton C 2015 npj Computational Materials 115010
[9] Yang X, Wang Z, Zhao X, Song J, Zhang M and Liu H 2018 Computational Materials Science 146 319
[10] Draxl C and Scheffler M 2019 J. Phys.: Mater. 2 036001
[11] Talirz L, Kumbhar S, Passaro E, Yakutovich A V, Granata V, Gargiulo F, Borelli M, Uhrin M, Huber S P, Zoupanos S, Adorf C S, Andersen C W, Schutt O, Pignedoli C A, Passerone D, VandeVondele J, Schulthess T C, Smit B, Pizzi G and Marzari N 2020 Scientific Data 7 299
[12] Miao L and Sheng M 2020 Atomly https://atomly.net/
[13] Hey T, Tansley S, Tolle K and Gray J 2009 The Fourth Paradigm: DataIntensive Scientific Discovery (Microsoft Research)
[14] Agrawal A and Choudhary A 2016 APL Materials 4 053208
[15] Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A and Kim C 2017 npj Computational Materials 3 54
[16] Lookman T, Balachandran P V, Xue D and Yuan R 2019 npj Computational Materials 5 21
[17] Schleder G R, Padilha A C M, Acosta C M, Costa M and Fazzio A 2019 J. Phys.: Mater. 2 032001
[18] Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G and Cubuk E D 2023 Nature 624 80
[19] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Nature 559 547
[20] Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park C W, Choudhary A, Agrawal A, Billinge S J L, Holm E, Ong S P and Wolverton C 2022 npj Computational Materials 8 59
[21] Zhong X, Gallagher B, Liu S, Kailkhura B, Hiszpanski A and Han T Y J 2022 npj Computational Materials 8 204
[22] Vu T S, Ha M Q, Nguyen D N, Nguyen V C, Abe Y, Tran T, Tran H, Kino H, Miyake T, Tsuda K and Dam H C 2023 npj Computational Materials 9 215
[23] Sanchez-Lengeling B and Aspuru-Guzik A 2018 Science 361 360
[24] Gubernatis J E and Lookman T 2018 Phys. Rev. Materials 2 120301
[25] Ma J, Cao B, Dong S, Tian Y, Wang M, Xiong J and Sun S 2024 npj Computational Materials 10 59
[26] Oganov A R, Pickard C J, Zhu Q and Needs R J 2019 Nature Reviews Materials 4 331
[27] Chan C H, Sun M and Huang B 2022 EcoMat 4 e12194
[28] Griesemer S D, Xia Y and Wolverton C 2023 Nature Computational Science 3 934
[29] Stein H S and Gregoire J M 2019 Chemical Science 10 9640
[30] Pyzer-Knapp E O, Pitera J W, Staar P W J, Takeda S, Laino T, Sanders D P, Sexton J, Smith J R and Curioni A 2022 npj Computational Materials 8 84
[31] Szymanski N J, Rendy B, Fei Y, Kumar R E, He T, Milsted D, McDermott M J, Gallant M, Cubuk E D, Merchant A, Kim H, Jain A, Bartel C J, Persson K, Zeng Y and Ceder G 2023 Nature 624 86
[32] Kalidindi S R and Graef M D 2015 Annual Review of Materials Research 45 171
[33] Himanen L, Geurts A, Foster A S and Rinke P 2019 Advanced Science 6 1900808
[34] Andersen C W, Armiento R, Blokhin E, et al. 2021 Scientific Data 8 217
[35] Tshitoyan V, Dagdelen J, Weston L, Dunn A, Rong Z, Kononova O, Persson K A, Ceder G and Jain A 2019 Nature 571 95
[36] Gupta T, Zaki M, Krishnan N M A and Mausam 2022 npj Computational Materials 8 102
[37] Pyzer-Knapp E O, Manica M, Staar P, Morin L, Ruch P, Laino T, Smith J R and Curioni A 2025 npj Computational Materials 11 61
[38] Jiang X, Wang W, Tian S, Wang H, Lookman T and Su Y 2025 npj Computational Materials 11 79
[39] Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Van Duren J and Zakutayev A 2017 Applied Physics Reviews 4 011105
[40] Wu Y, Wang C F, Ju M G, Jia Q, Zhou Q, Lu S, Gao X, Zhang Y and Wang J 2024 Nat. Commun. 15 138
[41] Raccuglia P, Elbert K C, Adler P D F, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J and Norquist A J 2016 Nature 533 73
[42] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[43] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[44] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
[45] Chen C, Ye W, Zuo Y, Zheng C and Ong S P 2019 Chemistry of Materials 31 3564
[46] Schutt K T, Sauceda H E, Kindermans P J, Tkatchenko A and M uller K R 2018 The Journal of Chemical Physics 148 241722
[47] Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I and Jain A 2018 Computational Materials Science 152 60
[48] Xu H, Zhang B, Jin Z, Zhu T, Wu Q and Weng H 2024 Enhancing Large Language Models with Domain-Specific Knowledge: The Case in Topological Materials (Preprint 2409.13732)
[49] Ye C Y, Weng H M and Wu Q S 2024 Computational Materials Today 1 100003
[50] Condensed Matter Physics Data Center, Institute of Physics, Chinese Academy of Sciences MatElab: Electronic Laboratory for Material Science https://matelab.iphy.ac.cn
[51] Condensed Matter Physics Data Center, Institute of Physics, Chinese Academy of Sciences Crystal Structure and Diffraction Database https://cmpdc.iphy.ac.cn/diff/
[52] Condensed Matter Physics Data Center, Institute of Physics, Chinese Academy of Sciences Materiae: Topological Materials Database https://cmpdc.iphy.ac.cn/materiae/
[53] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475
[54] Li J, Liu J, Baronett S A, Liu M, Wang L, Li R, Chen Y, Li D, Zhu Q and Chen X Q 2021 Nat. Commun. 12 1204
[55] Condensed Matter Physics Data Center, Institute of Physics, Chinese Academy of Sciences and Institute of Metal Research, Chinese Academy of Sciences Topological Phonon Database http://www.phonon.synl.ac.cn/
[56] Condensed Matter Physics Data Center, Institute of Physics, Chinese Academy of Sciences and Univeristy of Chinese Academy of Sciences 2D Ferroelectric Materials Database https://cmpdc.iphy.ac.cn/fedb/
[57] Condensed Matter Physics Data Center, Institute of Physics, Chinese Academy of Sciences and Department of Physics, Tsinghua University Nonlinear Optical Database https://cmpdc.iphy.ac.cn/nlo/
[58] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Computational Materials Science 68 314
[59] Togo A, Shinohara K and Tanaka I 2024 Science and Technology of Advanced Materials: Methods 4 2384822
[60] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[61] Malkov Y A and Yashunin D A 2020 IEEE Transactions on Pattern Analysis and Machine Intelligence 42 824
[62] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425
[63] Xu C, Feng J, Xiang H and Bellaiche L 2018 npj Computational Materials 4 57
[64] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P, Sheng Z G, Qu Z, Song W H, Zhu X B and Sun Y P 2017 Phys. Rev. B 95 245212
[65] Wang J, Wang Y and Chen Y 2022 Materials 15 1811
[66] Wilkinson M D, Dumontier M, Aalbersberg I J, et al. 2016 Scientific Data 3 160018
[67] Jiao R, Huang W, Liu Y, Zhao D and Liu Y 2024 Space Group Constrained Crystal Generation (Preprint 2402.03992)
[68] Li Q, Jiao R, Wu L, Zhu T, Huang W, Jin S, Liu Y, Weng H and Chen X 2025 Nat. Commun. 16 7428
[69] Kulik H J 2025 Journal of Materials Research 40 833
[70] Dunn A, Wang Q, Ganose A, Dopp D and Jain A 2020 npj Computational Materials 6 138
[71] Spek A L 2020 Acta Crystallographica Section E: Crystallographic Communications 76 1
[72] Goodall R E A and Lee A A 2020 Nat. Commun. 6280 2041
[73] Antunes L M, Butler K T and Grau-Crespo R 2024 Nat. Commun. 15 10570
[74] Zhu R, Nong W, Yamazaki S and Hippalgaonkar K 2024 Matter 7 3469
[75] Moro V, Loh C, Dangovski R, Ghorashi A, Ma A, Chen Z, Kim S, Lu P Y, Christensen T and Soljacic M 2025 Newton 1 100016
[76] Radford A, Kim J W, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J, Krueger G and Sutskever I 2021 Learning Transferable Visual Models From Natural Language Supervision (Preprint 2103.00020)
[77] Hall S R, Allen F H and Brown I D 1991 Acta Crystallographica Section A 47 655
[78] Johnson J, Douze M and Jegou H 2021 IEEE Transactions on Big Data 7 535
[79] Condensed Matter Physics Data Center, Institute of Physics, Chinese Academy of Sciences Single Crystal Growth Database https://cmpdc.iphy.ac.cn/mlab/
[80] Condensed Matter Physics Data Center, Institute of Physics, Chinese Academy of Sciences Layered Materials Database https://cmpdc.iphy.ac.cn/layered/
[1] Three-axis magnetic flux leakage in-line inspection simulation based on finite-element analysis
Feng Jian (冯健), Zhang Jun-Feng (张峻峰), Lu Sen-Xiang (卢森骧), Wang Hong-Yang (王宏阳), Ma Rui-Ze (马瑞泽). Chin. Phys. B, 2013, 22(1): 018103.
No Suggested Reading articles found!