Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 120509    DOI: 10.1088/1674-1056/ae0017
GENERAL Prev  

Synchronization of a fractional-order chaotic memristive system and its application to secure image transmission

Lamia Chouchane1,†, Hamid Hamiche1,‡, Karim Kemih2,§, Ouerdia Megherbi1,¶, and Karim Labadi3,#
1 Laboratoire de Conception et Conduite des Systemes de Production (L2CSP), UMMTO, BP 17 RP, 15000, Tizi-Ouzou, Algeria;
2 Laboratoire dElectrotechnique et dElectronique Industrielle (L2EI), Universite de Jijel, BP 98 Ouled Aissa, 18000 Jijel, Algeria;
3 Laboratoire de Recherche en Eco-Innovation Industrielle et Energtique (LR2E), ECAM-EPMI/Quartz-Lab Cergy pontoise, Cergy-Pontoise Cedex, France
Abstract  The dynamics of chaotic memristor-based systems offer promising potential for secure communication. However, existing solutions frequently suffer from drawbacks such as slow synchronization, low key diversity, and poor noise resistance. To overcome these issues, a novel fractional-order chaotic system incorporating a memristor emulator derived from the Shinriki oscillator is proposed. The main contribution lies in the enhanced dynamic complexity and flexibility of the proposed architecture, making it suitable for cryptographic applications. Furthermore, the feasibility of synchronization to ensure secure data transmission is demonstrated through the validation of two strategies: an active control method ensuring asymptotic convergence, and a finite-time control method enabling faster stabilization. The robustness of the scheme is confirmed by simulation results on a color image: $\chi^2={253/237/267}$ (R/G/B); entropy ${\approx 7.993}$; correlations between adjacent pixels in all directions are close to zero (e.g., ${-0.0318}$ vertically); and high number of pixel change rate and unified average changing intensity (e.g., ${33.40\%}$ and ${99.61\%}$, respectively). Peak signal-to-noise ratio analysis shows that resilience to noise and external disturbances is maintained. It is shown that multiple fractional orders further enrich the chaotic behavior, increasing the systems suitability for secure communication in embedded environments. These findings highlight the relevance of fractional-order chaotic memristive systems for lightweight secure transmission applications.
Keywords:  memristor      fractional-order chaotic system      synchronization      finite-time control      active control      cryptography      secure communications  
Received:  30 May 2025      Revised:  15 August 2025      Accepted manuscript online:  28 August 2025
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
  07.05.Dz (Control systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
  03.67.Dd (Quantum cryptography and communication security)  
Corresponding Authors:  Lamia Chouchane, Hamid Hamiche, Karim Kemih, Ouerdia Megherbi, Karim Labadi     E-mail:  lamia.chouchane@ummto.dz;hamid.hamiche@ummto.dz;k.kemih@gmail.com;ouerdia.megherbi@ummto.dz;k.labadi@ecam-epmi.com
About author:  2025-120509-250964.pdf

Cite this article: 

Lamia Chouchane, Hamid Hamiche, Karim Kemih,Ouerdia Megherbi, and Karim Labadi Synchronization of a fractional-order chaotic memristive system and its application to secure image transmission 2025 Chin. Phys. B 34 120509

[1] Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Williams R S 2008 IEEE Spectr. 45 28
[4] Chouchane L, Hamiche H, Kemih K, Azar A T, El-shafaiWand Kamal N A 2025 Proceedings of the 2025 International Conference on Control, Automation and Diagnosis (ICCAD) July 1-3, 2025, Barcelona, Spain
[5] Qian K, Xiao Y, Wei Y, Liu D, Wang Q and Feng W 2023 Micromachines 14 2090
[6] Yu F, Zhang S, Su D, Wu Y, Gracia Y M and Yin H 2025 Fractals Fract. 9 115
[7] Xiao P D, Fang J J, Wei Z M, Dong Y, Du S and Wen S 2025 IEEE Trans. Autom. Sci. Eng. 22 15163
[8] Hong Q, Jiang H, Xiao P, Du S and Li T 2025 IEEE Trans. Comput. 74 703
[9] Lin R, Shi G, Qiao F, Wang C and Wu S 2023 Microelectron. J. 133 105702
[10] Gupta R K, Joshi M, Bisen A, Agarwal A and Singh A 2025 Chaos Solitons Fractals 192 115964
[11] Neifar A, Barraj I, Mestiri H and Masmoudi M 2025 Micromachines 16 848
[12] Barraj I, Neifar A, Mestiri H and Masmoudi M 2025 Micromachines 16 269
[13] Zhou L, Wang C, Qin H and Wang Q 2023 AEU Int. J. Electron. Commun. 162 154593
[14] Ananda Y R, Raj N and Trivedi G 2023 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 31 C3
[15] Li M J, Zhou X F, Wang F, Bi M H, Yang G W, Xu M M, Hu M and Li H Z 2024 Chaos Solitons Fractals 182 114720
[16] Ma J, Zhang H, Zhang J andWang L 2024 Chaos Solitons Fractals 188 115534
[17] Hamiche H, Kemih K, Addouche S A, Azar A T, Saddaoui R and Laghrouche M 2021 Int. J. Adv. Intell. Paradigms 20 58
[18] Zouad F, Kemih K and Hamiche H 2019 Analog Integr. Circuits Signal Process. 99 619
[19] Megherbi O, Guermah S, Hamiche H, Djennoune S and Ghanes M 2007 Proceedings of the 3rd International Conference on Systems and Control (ICSC), October 29-31, 2007, Algiers, Algeria, p. 117
[20] Su J, Fang S, Hong Y and Wen Y 2024 Chin. Phys. B 33 070502
[21] Hamiche H, Guermah S, Kassim S, Lahdir M, Djennoune S and Bettayeb M 2015 Proc. 3rd Int. Conf. Control Eng. Inf. Technol. (CEIT) Tlemcen, Algeria
[22] Babu N R, Balasubramaniam P and Meng J E 2024 Multimed. Tools Appl. 83 26055
[23] Ye C, Tan S, Wang J, Shi L, Zuo Q and Feng W 2025 Entropy 27 276
[24] Feng W, Zhang J, Chen Y, Qin Z, Zhang Y, Ahmad M and Woniak M 2024 Expert Syst. Appl. 246 123190
[25] Feng W, Wang Q, Liu H, Ren Y, Zhang J, Zhang S, Qian K and Wen H 2023 Fractal Fract. 7 887
[26] Jiang M and Yang H 2023 Entropy 25 1516
[27] Setiadi D R I M and Rijati N 2023 Computation 11 178
[28] Shao S, Li J, Shao P and Xu G 2023 IEEE Access 11 27477
[29] Qian K, Xiao Y, Wei Y, Liu D, Wang Q and Feng W 2023 Micromachines 14 2090
[30] Wang Q, Sang H, Wang P, Yu X and Yang Z 2024 Sci. Rep. 14 29615
[31] Zhang Q and Han J 2021 Multimed. Tools Appl. 80 13841
[32] Kaur M, Singh D and Kumar V 2020 Appl. Phys. B 126 147
[33] Zhang J and Liu E 2024 Eur. Phys. J. B 97 100
[34] Xiong L, Wang X, Zhang X G and He T D 2024 Optoelectron. Lett. 20 183
[35] Duan Z K, Chen J H, He S B, Yu X M, Wang Q, Zhang X and Xiong P 2025 Micromachines 16 246
[36] Volos C K, Pham V T, Nistazakis H E and Stouboulos I N 2020 Int. J. Bifurcat. Chaos 30 2030036
[37] Messadi M, Kemih K, Moysis L and Volos C 2023 Integration 88 91
[38] Xiong Z, Qu S and Luo J 2019 Complexity 2019 3827201
[39] Yuan B, Xu H, Hu L and Wu J 2024 Front. Phys. 12 1445805
[40] Wang Y and Li K 2025 Math. Model. Control 5 164
[41] Fan J, Lai Q, Wang Q and Wang L 2024 Chin. Phys. B 33 110501
[42] Zhou L, Wang C H, Du S and Zhou L 2016 IEEE Trans. Neural Netw. Learn. Syst. 28 570
[43] Zhou L, Tan F, Yu F and Liu W 2019 Neurocomputing 359 264
[44] Zhou L, Lin H and Tan F 2023 Chaos Solitons Fractals 175 113977
[45] Zhou L and Tan F 2019 Nonlinear Dyn. 96 869
[46] Tan F, Zhou L, Zong G, Wang Z, Zhuang G and Shangguan X 2025 IEEE Trans. Autom. Sci. Eng. 22 10827
[47] Zhou L, Tan F and Yu F 2020 IEEE Syst. J. 14 2508
[48] Lin L, Zhuang Y, Xu Z, Yang D and Wu D 2023 Front. Phys. 11 1202871
[49] Yang F, Mou J, Liu J, Ma C and Yan H 2020 Signal Process. 176 107373
[50] Yang F, Mou J, Ma C and Cao Y 2020 Opt. Lasers Eng. 135 106031
[51] Megherbi O, Kassim S, Hamiche H, Djennoune S, Bettayeb M and Barbot J P 2017 Proc. SIAM Conf. Control Appl. (CT17) Pittsburgh, USA
[52] Kassim S, Hamiche H, Djennoune S and Bettayeb M 2019 Proc. IEEE Symp. Signal Process. Inf. Technol. (ISSPIT) Ajman, UAE
[53] Hannoun K, Hamiche H, Lahdir M, Megherbi O, Laghrouche M and Bettayeb M 2024 Phys. Scr. 99 055255
[54] Megherbi O, Hamiche H and Bettayeb M 2024 Comput. Electr. Eng. 116 109224
[55] Wang X, Zhang Y and Li M 2021 Multimed. Tools Appl. 80 7431
[56] Feng W, Qin Z T, Zhang J and Ahmad M 2021 IEEE Access 9 145459
[57] Feng W, He Y, Li H and Li C 2019 IEEE Access 7 12584
[58] Zhao Y, Shi Q and Ding Q 2025 Entropy 27 40
[59] Fan H, Zhang C, Lu H, Li M and Liu Y 2021 Entropy 23 158
[60] Shinriki M, Yamato M and Mori 1981 Proc. IEEE 69 394
[61] Chouchan L, Hamiche H, Kemih K and Ouslimani A 2024 Nonlinear Phenom. Complex Syst. 27 135
[62] Bao H and Cao J 2016 Nonlinear Anal. Model. Control. 21 306
[63] Zhang D, Mei J and Miao P 2017 Appl. Math. Model. 48 303
[64] Wang E, Yan S, Sun X and Wang Q 2023 Nonlinear Dyn. 111 3869
[65] Chen D, Zhang R, Liu X and Ma X 2014 Commun. Nonlinear Sci. Numer. Simul. 19 4105
[66] Aguila-Camacho N, Duarte-Mermoud M and Gallegos J 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2951
[67] Alghamdi Y, Munir A and Ahmad J 2022 Entropy 24 1344
[68] Setiadi D R I M and Rijati N 2023 Computation 11 178
[69] Shannon C E 1948 Bell Syst. Tech. J. 27 379
[70] Niu Y, Sun X, Zhang C and Liu H 2020 Math. Probl. Eng. 2020 6795964
[71] Dong Z, Zhang Z, Zhou H and Chen X 2024 Comput. Mater. Continua 78 1977
[72] Kanwal S, et al. 2022 Secur. Commun. Netw. 2022 4152683
[73] Li R, Liu T and Yin J 2024 Sci. Rep. 14 20733
[74] Li T, Shi J and Zhang D 2021 J. Electron. Imaging 30 013008
[75] Mohamed H G, ElKamchouchi D H and Moussa K H 2020 Entropy 22 158
[76] Hua Z, Zhu Z, Yi S, Zhang Z and Huang H 2021 Inf. Sci. 546 1063
[77] Hua Z, Zhou Y and Huang H 2019 Inf. Sci. 480 403
[78] Qian K, Feng W, Qin Z, Zhang J, Luo X and Zhu Z 2022 Front. Phys. 10 718
[79] Wu Y, Noonan J P and Agaian S 2011 Cyber J. Sel. Areas Telecommun. (JSAT) 1 31
[80] Ozkaynak F 2018 Nonlinear Dyn. 92 305
[81] Luo Y,Wang F, Xu S, Zhang S, Li L, Su M and Liu J 2022 Expert Syst. Appl. 208 118133
[1] Optimal synchronization of higher-order Kuramoto model on hypergraphs
Chong-Yang Wang(王重阳), Bi-Yun Ji(季碧芸), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(7): 070502.
[2] Effects of noise on synchronization in simplicial complexes
Linying Xiang(项林英), Shuwei Yao(姚姝玮), Yining Chen(陈艺宁), Ruitong Yan(闫锐桐), and Ruya Xia(夏儒雅). Chin. Phys. B, 2025, 34(7): 070503.
[3] Synchronous dynamics of robotic arms driven by Chua circuits
Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰). Chin. Phys. B, 2025, 34(6): 060501.
[4] A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵). Chin. Phys. B, 2025, 34(5): 050503.
[5] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[6] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[7] Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
Cheng-Jun Xie(解成俊) and Xiang-Qing Lu(卢向清). Chin. Phys. B, 2025, 34(4): 040601.
[8] Discrete neuron models and memristive neural network mapping: A comprehensive review
Fei Yu(余飞), Xuqi Wang(王许奇), Rongyao Guo(郭荣垚), Zhijie Ying(应志杰), Yan He(何燕), and Qiong Zou(邹琼). Chin. Phys. B, 2025, 34(12): 120501.
[9] Dynamical behavior of ring-star neural networks with small-world characteristics
Minglin Ma(马铭磷), Zhiyi Yuan(袁芷依), Umme Kalsoom, Weizheng Deng(邓为政), and Shaobo He(贺少波). Chin. Phys. B, 2025, 34(10): 100502.
[10] Condensation and criticality of eigen microstates of phase fluctuations in Kuramoto model
Ning-Ning Wang(王宁宁), Qing Yao(姚卿), Ying Fan(樊瑛), Zeng-Ru Di(狄增如), and Xiao-Song Chen(陈晓松). Chin. Phys. B, 2025, 34(10): 100501.
[11] A physical memristor model for Pavlovian associative memory
Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东), and Xiaofang Hu(胡小方). Chin. Phys. B, 2025, 34(1): 018703.
[12] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[13] Proposal for a realtime Einstein-synchronization-defined satellite virtual clock
Chenhao Yan(严晨皓), Xueyi Tang(汤雪逸), Shiguang Wang(王时光), Lijiaoyue Meng(孟李皎悦), Haiyuan Sun(孙海媛), Yibin He(何奕彬), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(7): 070601.
[14] Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
Ling Xu(徐玲) and Lei Jiang(姜磊). Chin. Phys. B, 2024, 33(6): 060503.
[15] One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
Yalin Li(李亚霖), Kailu Shi(时凯璐), Yixin Zhu(朱一新), Xiao Fang(方晓), Hangyuan Cui(崔航源), Qing Wan(万青), and Changjin Wan(万昌锦). Chin. Phys. B, 2024, 33(6): 068401.
No Suggested Reading articles found!