Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060508    DOI: 10.1088/1674-1056/24/6/060508
GENERAL Prev   Next  

Mittag-Leffler synchronization of fractional-order uncertain chaotic systems

Wang Qiao (王乔), Ding Dong-Sheng (丁冬生), Qi Dong-Lian (齐冬莲)
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  This paper deals with the synchronization of fractional-order chaotic systems with unknown parameters and unknown disturbances. An adaptive control scheme combined with fractional-order update laws is proposed. The asymptotic stability of the error system is proved in the sense of generalized Mittag–Leffler stability. The two fractional-order chaotic systems can be synchronized in the presence of model uncertainties and additive disturbances. Finally these new developments are illustrated in examples and numerical simulations are provided to demonstrate the effectiveness of the proposed control scheme.
Keywords:  chaos      synchronization      adaptive control      Mittag-Leffler stability  
Received:  19 November 2014      Revised:  28 December 2014      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61171034) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. R1110443).
Corresponding Authors:  Wang Qiao     E-mail:  qiao@zju.edu.cn
About author:  05.45.Gg; 05.45.Pq

Cite this article: 

Wang Qiao (王乔), Ding Dong-Sheng (丁冬生), Qi Dong-Lian (齐冬莲) Mittag-Leffler synchronization of fractional-order uncertain chaotic systems 2015 Chin. Phys. B 24 060508

[1] Diethelm K 2010 The Analysis of Fractional Differential Equations (Berlin: Springer)
[2] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[3] Ahmed E and EI-Sayed A M 2006 Phys. Lett. A 358 1
[4] Ahmed E and EI-Sayed A M 2007 J. Math. Anal. Appl. 325 542
[5] Tavazoei M S and Haeri M 2008 Physica D 237 2628
[6] Tavazoei M S and Haeri M 2009 Math. Comput. Simul. 79 1566
[7] Dadras S and Momeni H R 2010 Physica A 389 2434
[8] Djennoune S and Bettayeb M 2013 Automatica 49 2243
[9] Lu J G 2005 Int. J. Mod. Phys. 20 3249
[10] Petras I 2011 Fractional-order Nonlinear Systems (Berlin: Springer)
[11] Wu X J, Li J and Chen G R 2008 J. Franklin Inst. 345 392
[12] Zhang B, Pi Y and Luo Y 2012 ISA Trans. 51 649
[13] Chen D Y, Wu. C, Iu H H C and Ma X Y 2013 Nonlinear Dyn. 73 1671
[14] Chen D Y, Liu C F, Wu. C, Liu Y J, Ma X Y and You Y J 2012 Circuits Syst. Signal Process. 31 1599
[15] Odibet Z and Corson N 2010 Int. J. Bifur. Chaos 20 81
[16] Lee T H, Park J H, Lee S M and Kwon O M 2013 Int. J. Control 86 107
[17] Wang D F, Zhang J Y and Wang X Y 2014 Chin. Phys. B 22 100504
[18] Li R H and Chen W S 2013 Chin. Phys. B 22 040503
[19] Liu S and Chen L Q 2013 Chin. Phys. B 22 100506
[20] Chen D Y, Zhang R F, Sprott J C and Ma X Y 2012 Nonlinear Dyn. 70 1549
[21] Aghababa M P 2014 Nonlinear Dyn. 78 2129
[22] Selivanov A and Fradkov A 2014 J. Franklin Inst. 351 5024
[23] Zheng S 2013 Nonlinear Dyn. 74 957
[24] Liu D, Wu Z and Ye Q 2014 Nonlinear Dyn. 75 209
[25] Chen D Y, Zhao W L, Sprott J C and Ma X Y 2013 Nonlinear Dyn. 73 1495
[26] Li Y, Chen Y C and Podlubny I 2011 Comput. Math. Appl. 59 1810
[27] Camacho N A 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2951
[28] Mermoud M A and Camacho N A 2014 Commun. Nonlinear Sci. Numer. Simul. 41 2734
[29] Mohammad R F, Hadi D and Dumitru B 2013 Comput. Math. Appl. 66 832
[30] Dadras S and Momeni H R 2013 Mechatronics 23 880
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[4] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[5] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[8] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[9] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[12] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[13] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[14] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[15] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
No Suggested Reading articles found!