Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020501    DOI: 10.1088/1674-1056/21/2/020501
GENERAL Prev   Next  

Stochastic synchronization for time-varying complex dynamical networks

Guo Xiao-Yong(郭晓永)a)b)† and Li Jun-Min(李俊民)a)
a. Department of Applied Mathematics, Xidian University, Xi'an 710071, China;
b. Department of Mathematics and Science, Lincang Teachers' College, Lincang 677000, Yunnan Province, China
Abstract  This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
Keywords:  stochastic dynamical networks      synchronization      time-varying coupling strength      adaptive control  
Received:  18 April 2011      Revised:  15 September 2011      Accepted manuscript online: 
PACS:  05.10.Gg (Stochastic analysis methods)  
  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60974139) and the Fundamental Research Funds for the Central Universities (Grant No. 72103676).
Corresponding Authors:  Guo Xiao-Yong,xyguomath@126.com     E-mail:  xyguomath@126.com

Cite this article: 

Guo Xiao-Yong(郭晓永) and Li Jun-Min(李俊民) Stochastic synchronization for time-varying complex dynamical networks 2012 Chin. Phys. B 21 020501

[1] Strogatz S H 2001 Nature 410 268
[2] Watts D J and Strogatz S H 1998 Nature 393 440
[3] Wang X F and Chen G 2003 IEEE Circuits Syst. Mag. 3 6
[4] Park K, Lai Y C, Gupte S and Kim J W 2006 Chaos 16 015105
[5] Yu W, Chen G and L? J 2009 Automatica 45 429
[6] Wang Y, Wang Z and Liang J 2009 J. Phys. A: Math. Theor. 42 135101
[7] Cao J, Yu W and Qu Y 2006 Phys. Lett. A 356 414
[8] Lu W and Chen T 2004 IEEE Trans. Circuits Syst. I 51 2491
[9] Cao J, Li P and Wang W 2006 Phys. Lett. A 353 318
[10] L? J, Yu X and Chen G 2004 Physica A 334 281
[11] Zhang H G, Gong D W and Wang Z S 2011 Chin. Phys. B 20 040512
[12] Li Z, Jiao L and Lee J 2008 Physica A 387 1369
[13] Yu W and Cao J 2007 Physica A 373 252
[14] Yu W and Cao J 2007 Neural Proc. Lett. 26 101
[15] Huang X and Cao J 2006 Nonlinearity 19 2797
[16] Cao J and Lu J 2006 Chaos 16 013133
[17] Yu W and Cao J 2007 Physica A 375 467
[18] Huang D 2005 Phys. Rev. E 71 037203
[19] Cao J, Wang Z and Sun Y 2007 Physica A 385 718
[20] Wang Y, Wang Z and Liang J 2008 Phys. Lett. A 372 6066
[21] Liang J, Wang Z and Liu X 2009 IEEE Trans. Neural Netw. 20 781
[22] Duan D H, Xu W, Su J and Zhou B C 2011 Chin. Phys. B 20 030501
[23] Lin W and He W 2005 Chaos 15 023705
[24] Sun Y and Cao J 2007 Phys. Lett. A 364 277
[25] Yang X and Cao J 2009 Phys. Lett. A 373 3259
[26] Yu W, Chen G and Cao J 2011 Asian Journal of Control 13 1
[27] Yang X and Cao J 2010 Applied Mathematical Modelling 34 3631
[28] Wang Z, Wang Y and Liu Y 2010 IEEE Trans. Neural Netw. 21 11
[29] Tang Y, Wong W K, Fang J A and Miao Q Y 2011 Chin. Phys. B 20 040513
[30] Kolmanovskii V B and Myskis A D 1999 Introduction to the Theory and Applications of Functional Differential Equations (Dordrecht: Kluwer Academic Publishers)
[31] Mao X 1997 Stochastic Differential Equations and Applications (Chichester: Horwood Pubishing)
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[11] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[12] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[13] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
No Suggested Reading articles found!