| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Regulation mechanism of Si vacancies in unintentional silicon-doped diamond by gas flow in MPCVD |
| Kai Yang(杨凯), Liangxue Gu(顾梁雪), Genyou Zhao(赵耕右), Kun Tang(汤琨)†, Bo Feng(冯博), Jiandong Ye(叶建东), Rong Zhang(张荣), Shunming Zhu(朱顺明), and Shulin Gu(顾书林)‡ |
| School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China |
|
|
|
|
Abstract Diamond with silicon vacancies has an important role as a promising single-photon source applicable in the quantum information field. However, in a microwave plasma chemical vapor deposition (MPCVD) system, due to the presence of unintentional silicon doping sources such as quartz windows, the behavior of silicon vacancy formation in silicon-doped diamond is complex. In this work, the underlying mechanism of formation of silicon vacancies by unintentional silicon doping in diamond is investigated from the perspective of growing surface kinetics in a two-gas-flow MPCVD system. This system is equipped with a novel susceptor geometry designed to deliver an additional gas flow directly onto the substrate surface. Increasing the concentration of growth doping substances on the substrate surface thereby enhances the efficiency of silicon vacancy formation in diamond. At the same time, by changing the substrate deposition angle the distribution of gas and plasma on the substrate surface is changed, thereby regulating the concentration and distribution of silicon vacancies formed by unintentional silicon doping. Experimental and computational results demonstrate that the difference in silicon vacancies formed by unintentional silicon doping in diamond depends on the substances present on the substrate surface and the distribution of plasma.
|
Received: 02 April 2025
Revised: 14 June 2025
Accepted manuscript online: 17 September 2025
|
|
PACS:
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
| |
81.05.ug
|
(Diamond)
|
| |
07.30.Bx
|
(Degasification, residual gas)
|
| |
07.30.Kf
|
(Vacuum chambers, auxiliary apparatus, and materials)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62274084) and the Fundamental Research Funds for the Central Universities (Grant No. 0210-14380193). |
Corresponding Authors:
Kun Tang, Shulin Gu
E-mail: ktang@nju.edu.cn;slgu@nju.edu.cn
|
Cite this article:
Kai Yang(杨凯), Liangxue Gu(顾梁雪), Genyou Zhao(赵耕右), Kun Tang(汤琨), Bo Feng(冯博), Jiandong Ye(叶建东), Rong Zhang(张荣), Shunming Zhu(朱顺明), and Shulin Gu(顾书林) Regulation mechanism of Si vacancies in unintentional silicon-doped diamond by gas flow in MPCVD 2025 Chin. Phys. B 34 118102
|
[1] Mzyk A, Ong Y, Ortiz Moreno A R, Padamati S K, Zhang Y, Reyes- San-Martin C A and Schirhagl R 2021 Anal. Chem. 94 225 [2] Tzeng Y K, Ke F, Jia C, Liu Y, Park S, Han M, Frost M, Cai X, MaoW L and Ewing R C 2024 Nat. Commun. 15 7251 [3] Wu Y and Weil T 2022 Adv. Sci. 9 2200059 [4] Yang C, Mi Z, Jin H, Venkatesan T, Vispute R and Bettiol A A 2023 Carbon 203 842 [5] Bradac C, Gao W, Forneris J, Trusheim M E and Aharonovich I 2019 Nat. Commun. 10 5625 [6] Liu Y, Guo Q, Cai Z, Wang Z, Zhao H, Li B, Li M, Chen L, Ma H and Jia X 2023 J. Cryst. Growth 619 127346 [7] Evans R E, Sipahigil A, Sukachev D D, Zibrov A S and Lukin M D 2016 Phys. Rev. Appl. 5 044010 [8] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F and Lukin M D 2017 Phys. Rev. Lett. 119 223602 [9] Zhang T, Gupta M, Jing J, Wang Z, Guo X, Zhu Y, Yiu Y C, Hui T K, Wang Q and Li K H 2022 J. Mater. Chem. C 10 13734 [10] Choi S, Agafonov V N, Davydov V A and Plakhotnik T 2019 ACS Photonics 6 1387 [11] Choi S, Agafonov V N, Davydov V A, Kulikova L F and Plakhotnik T 2020 Nanotechnology 31 205709 [12] Lagomarsino S, Flatae A, Kambalathmana H, Sledz F, Hunold L, Soltani N, Reuschel P, Sciortino S, Gelli N and Massi M 2021 Front. Phys. 8 601362 [13] Titze M, Byeon H, Flores A, Henshaw J, Harris C T, Mounce A M and Bielejec E S 2022 Nano Lett. 22 3212 [14] Yang B, Li H, Yu B, Lu J, Huang N, Liu L and Jiang X 2021 Carbon 171 455 [15] Raj R, Pradeep K and Rao M 2024 Bull. Mat. Sci. 47 1 [16] Guo X, Yang B, Zhang X, Lu J, Huang M, Huang N, Liu L and Jiang X 2024 J. Mater. Chem. C 12 15483 [17] Lin W, Lv X, Wang Q, Li L and Zou G 2024 Mater. Sci. Semicond. Process 180 108554 [18] Sedov V, Ralchenko V, Khomich A, Vlasov I, Vul A, Savin S, Goryachev A and Konov V 2015 Diam. Relat. Mat. 56 23 [19] Bolshakov A, Ralchenko V, Sedov V, Khomich A, Vlasov I, Khomich A, Trofimov N, Krivobok V, Nikolaev S and Khmelnitskii R 2015 Phys. Status Solidi A-Appl. Res. 212 2525[20] Sedov V, Khomich A, Ralchenko V, Martyanov A, Savin S, Poklonskaya O and Trofimov N 2015 Journal of Coating Science and Technology 2 38 [21] Dietrich A, Jahnke K D, Binder J M, Teraji T, Isoya J, Rogers L J and Jelezko F 2014 New J. Phys. 16 113019 [22] Di Liscia E J, Reinoso M, Á lvarez F and Huck H 2019 Appl. Phys. A-Mater. Sci. Process. 125 1 [23] Emelyanov A, Pinaev V, Plotnikov M Y, Rebrov A, Timoshenko N and Yudin I 2022 J. Phys. D-Appl. Phys. 55 205202 [24] Croot A, Mahoney E J, Dominguez-Andrade H, Ashfold M N and Fox N A 2020 Diam. Relat. Mat. 109 108011 [25] Tomita S, Burian A, Dore J C, LeBolloch D, Fujii M and Hayashi S 2002 Carbon 40 1469 [26] Yang K, Teng Y, ZhaoW, Tang K, Fan K, Duan J, Huang Y, Ye J, Zhang R and Zhu S 2024 Vacuum 222 113027 [27] Zaitsev A, Moe K and Wang W 2018 Diam. Relat. Mat. 88 237 [28] Liu D, Hao L, Chen Z, Zhao W, Shen Y, Bian Y, Tang K, Ye J, Zhu S and Zhang R 2020 Appl. Phys. Lett. 117 022101 [29] Aprà P, Amine N H, Britel A, Sturari S, Varzi V, Ziino M, Mino L, Olivero P and Picollo F 2024 Adv. Funct. Mater. 39 2404831 [30] Khomich A A, Sektarov E S, Boldyrev K, Ralchenko V, Bolshakov A P, Khmelnitsky R A and Sedov V 2024 Opt. Mater. 157 116206 [31] Plakhotnik T, Duka T, Davydov V A and Agafonov V N 2023 Diam. Relat. Mat. 139 110363 [32] Thapliyal V, Alabdulkarim M E, Whelan D R, Mainali B and Maxwell J L 2022 Diam. Relat. Mat. 127 109180 [33] Mansoor M, Mansoor M, Mansoor M, Aksoy A, Seyhan S N, Yıldırım B, Tahiri A, Solak N, Kazmanlı K and Er Z 2022 Diam. Relat. Mat. 126 109072 [34] Collins A T 2002 J. Phys-Condens. Matter 14 3743 [35] Fernandes A, Silva V, Carrapichano J, Dias G, Silva R and Costa F 2001 Diam. Relat. Mat. 10 803 [36] Yang B, Shen S, Zhang L, Shen Q, Zhang R, Zhang Y, Gan Z and Liu S 2022 J. Appl. Crystallogr. 55 240 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|