Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 118102    DOI: 10.1088/1674-1056/ae07aa
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Regulation mechanism of Si vacancies in unintentional silicon-doped diamond by gas flow in MPCVD

Kai Yang(杨凯), Liangxue Gu(顾梁雪), Genyou Zhao(赵耕右), Kun Tang(汤琨)†, Bo Feng(冯博), Jiandong Ye(叶建东), Rong Zhang(张荣), Shunming Zhu(朱顺明), and Shulin Gu(顾书林)‡
School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China
Abstract  Diamond with silicon vacancies has an important role as a promising single-photon source applicable in the quantum information field. However, in a microwave plasma chemical vapor deposition (MPCVD) system, due to the presence of unintentional silicon doping sources such as quartz windows, the behavior of silicon vacancy formation in silicon-doped diamond is complex. In this work, the underlying mechanism of formation of silicon vacancies by unintentional silicon doping in diamond is investigated from the perspective of growing surface kinetics in a two-gas-flow MPCVD system. This system is equipped with a novel susceptor geometry designed to deliver an additional gas flow directly onto the substrate surface. Increasing the concentration of growth doping substances on the substrate surface thereby enhances the efficiency of silicon vacancy formation in diamond. At the same time, by changing the substrate deposition angle the distribution of gas and plasma on the substrate surface is changed, thereby regulating the concentration and distribution of silicon vacancies formed by unintentional silicon doping. Experimental and computational results demonstrate that the difference in silicon vacancies formed by unintentional silicon doping in diamond depends on the substances present on the substrate surface and the distribution of plasma.
Keywords:  diamond      silicon vacancy      doping mechanism      unintentional doping  
Received:  02 April 2025      Revised:  14 June 2025      Accepted manuscript online:  17 September 2025
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.05.ug (Diamond)  
  07.30.Bx (Degasification, residual gas)  
  07.30.Kf (Vacuum chambers, auxiliary apparatus, and materials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62274084) and the Fundamental Research Funds for the Central Universities (Grant No. 0210-14380193).
Corresponding Authors:  Kun Tang, Shulin Gu     E-mail:  ktang@nju.edu.cn;slgu@nju.edu.cn

Cite this article: 

Kai Yang(杨凯), Liangxue Gu(顾梁雪), Genyou Zhao(赵耕右), Kun Tang(汤琨), Bo Feng(冯博), Jiandong Ye(叶建东), Rong Zhang(张荣), Shunming Zhu(朱顺明), and Shulin Gu(顾书林) Regulation mechanism of Si vacancies in unintentional silicon-doped diamond by gas flow in MPCVD 2025 Chin. Phys. B 34 118102

[1] Mzyk A, Ong Y, Ortiz Moreno A R, Padamati S K, Zhang Y, Reyes- San-Martin C A and Schirhagl R 2021 Anal. Chem. 94 225
[2] Tzeng Y K, Ke F, Jia C, Liu Y, Park S, Han M, Frost M, Cai X, MaoW L and Ewing R C 2024 Nat. Commun. 15 7251
[3] Wu Y and Weil T 2022 Adv. Sci. 9 2200059
[4] Yang C, Mi Z, Jin H, Venkatesan T, Vispute R and Bettiol A A 2023 Carbon 203 842
[5] Bradac C, Gao W, Forneris J, Trusheim M E and Aharonovich I 2019 Nat. Commun. 10 5625
[6] Liu Y, Guo Q, Cai Z, Wang Z, Zhao H, Li B, Li M, Chen L, Ma H and Jia X 2023 J. Cryst. Growth 619 127346
[7] Evans R E, Sipahigil A, Sukachev D D, Zibrov A S and Lukin M D 2016 Phys. Rev. Appl. 5 044010
[8] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F and Lukin M D 2017 Phys. Rev. Lett. 119 223602
[9] Zhang T, Gupta M, Jing J, Wang Z, Guo X, Zhu Y, Yiu Y C, Hui T K, Wang Q and Li K H 2022 J. Mater. Chem. C 10 13734
[10] Choi S, Agafonov V N, Davydov V A and Plakhotnik T 2019 ACS Photonics 6 1387
[11] Choi S, Agafonov V N, Davydov V A, Kulikova L F and Plakhotnik T 2020 Nanotechnology 31 205709
[12] Lagomarsino S, Flatae A, Kambalathmana H, Sledz F, Hunold L, Soltani N, Reuschel P, Sciortino S, Gelli N and Massi M 2021 Front. Phys. 8 601362
[13] Titze M, Byeon H, Flores A, Henshaw J, Harris C T, Mounce A M and Bielejec E S 2022 Nano Lett. 22 3212
[14] Yang B, Li H, Yu B, Lu J, Huang N, Liu L and Jiang X 2021 Carbon 171 455
[15] Raj R, Pradeep K and Rao M 2024 Bull. Mat. Sci. 47 1
[16] Guo X, Yang B, Zhang X, Lu J, Huang M, Huang N, Liu L and Jiang X 2024 J. Mater. Chem. C 12 15483
[17] Lin W, Lv X, Wang Q, Li L and Zou G 2024 Mater. Sci. Semicond. Process 180 108554
[18] Sedov V, Ralchenko V, Khomich A, Vlasov I, Vul A, Savin S, Goryachev A and Konov V 2015 Diam. Relat. Mat. 56 23
[19] Bolshakov A, Ralchenko V, Sedov V, Khomich A, Vlasov I, Khomich A, Trofimov N, Krivobok V, Nikolaev S and Khmelnitskii R 2015 Phys. Status Solidi A-Appl. Res. 212 2525[20] Sedov V, Khomich A, Ralchenko V, Martyanov A, Savin S, Poklonskaya O and Trofimov N 2015 Journal of Coating Science and Technology 2 38
[21] Dietrich A, Jahnke K D, Binder J M, Teraji T, Isoya J, Rogers L J and Jelezko F 2014 New J. Phys. 16 113019
[22] Di Liscia E J, Reinoso M, Á lvarez F and Huck H 2019 Appl. Phys. A-Mater. Sci. Process. 125 1
[23] Emelyanov A, Pinaev V, Plotnikov M Y, Rebrov A, Timoshenko N and Yudin I 2022 J. Phys. D-Appl. Phys. 55 205202
[24] Croot A, Mahoney E J, Dominguez-Andrade H, Ashfold M N and Fox N A 2020 Diam. Relat. Mat. 109 108011
[25] Tomita S, Burian A, Dore J C, LeBolloch D, Fujii M and Hayashi S 2002 Carbon 40 1469
[26] Yang K, Teng Y, ZhaoW, Tang K, Fan K, Duan J, Huang Y, Ye J, Zhang R and Zhu S 2024 Vacuum 222 113027
[27] Zaitsev A, Moe K and Wang W 2018 Diam. Relat. Mat. 88 237
[28] Liu D, Hao L, Chen Z, Zhao W, Shen Y, Bian Y, Tang K, Ye J, Zhu S and Zhang R 2020 Appl. Phys. Lett. 117 022101
[29] Aprà P, Amine N H, Britel A, Sturari S, Varzi V, Ziino M, Mino L, Olivero P and Picollo F 2024 Adv. Funct. Mater. 39 2404831
[30] Khomich A A, Sektarov E S, Boldyrev K, Ralchenko V, Bolshakov A P, Khmelnitsky R A and Sedov V 2024 Opt. Mater. 157 116206
[31] Plakhotnik T, Duka T, Davydov V A and Agafonov V N 2023 Diam. Relat. Mat. 139 110363
[32] Thapliyal V, Alabdulkarim M E, Whelan D R, Mainali B and Maxwell J L 2022 Diam. Relat. Mat. 127 109180
[33] Mansoor M, Mansoor M, Mansoor M, Aksoy A, Seyhan S N, Yıldırım B, Tahiri A, Solak N, Kazmanlı K and Er Z 2022 Diam. Relat. Mat. 126 109072
[34] Collins A T 2002 J. Phys-Condens. Matter 14 3743
[35] Fernandes A, Silva V, Carrapichano J, Dias G, Silva R and Costa F 2001 Diam. Relat. Mat. 10 803
[36] Yang B, Shen S, Zhang L, Shen Q, Zhang R, Zhang Y, Gan Z and Liu S 2022 J. Appl. Crystallogr. 55 240
[1] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[2] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[3] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[4] Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering
Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞). Chin. Phys. B, 2025, 34(7): 070703.
[5] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[6] Ultrahigh concentration of NV- centers embedded in the CVD epi-diamond layer near the interface with an HPHT diamond substrate
Yuanjie Yang(杨元杰), Shengran Lin(林盛然), Jiaxin Zhao(赵嘉昕), Changfeng Weng(翁长风), Liren Lou(楼立人), Wei Zhu(祝巍), and Guanzhong Wang(王冠中). Chin. Phys. B, 2025, 34(5): 056102.
[7] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[8] Effect of metal solvent and growth surface on boron doping efficiency and impurity incorporation in HPHT-grown diamond single crystals
Hongbo Li(李鸿波), Wenhao Wang(王文豪), Yadong Li(李亚东), Liangchao Chen(陈良超), Zhuangfei Zhang(张壮飞), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Biao Wan(万彪), Chunlei Du(杜春雷), and Chao Fang(房超). Chin. Phys. B, 2025, 34(11): 118101.
[9] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[10] Diamond-based electron emission: Structure, properties and mechanisms
Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2024, 33(9): 098102.
[11] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[12] Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment
Guofeng Huang(黄国锋), Liangchao Chen(陈良超), and Chao Fang(房超). Chin. Phys. B, 2024, 33(6): 068102.
[13] Effect of surface modification on the radiation stability of diamond ohmic contacts
Lian-Xi Mu(牟恋希), Shang-Man Zhao(赵上熳), Peng Wang(王鹏), Xiao-Lu Yuan(原晓芦), Jin-Long Liu(刘金龙), Zhi-Fu Zhu(朱志甫), Liang-Xian Chen(陈良贤), Jun-Jun Wei(魏俊俊), Xiao-Ping Ou-Yang(欧阳晓平), and Cheng-Ming Li(李成明). Chin. Phys. B, 2024, 33(2): 026801.
[14] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[15] Micron-resolved quantum precision measurement of magnetic field at the Tesla level
Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(12): 120305.
No Suggested Reading articles found!