Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 118101    DOI: 10.1088/1674-1056/adfb55
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Effect of metal solvent and growth surface on boron doping efficiency and impurity incorporation in HPHT-grown diamond single crystals

Hongbo Li(李鸿波)1, Wenhao Wang(王文豪)1, Yadong Li(李亚东)2, Liangchao Chen(陈良超)1,†, Zhuangfei Zhang(张壮飞)1, Yuewen Zhang(张跃文)1, Qianqian Wang(王倩倩)1, Biao Wan(万彪)1, Chunlei Du(杜春雷)2, and Chao Fang(房超)1,‡
1 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China;
2 College of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
Abstract  To enhance boron doping efficiency and reduce metal impurities in diamonds, selecting an appropriate metal solvent is essential for producing p-type diamonds using the high-pressure high-temperature (HPHT) method. This paper presents a detailed study of the properties and characteristics of boron-doped diamond (BDD) single crystals grown using FeNi and FeCo solvents through the HPHT method. The results indicate that, with the same TiB2 addition ratio, BDD crystals grown using FeCo solvent have a higher concentration of uncompensated boron ions, resulting in improved boron doping efficiency. Additionally, by growing BDD in the same synthesis environment (FeCo-3 wt% TiB2) using (111) and (100) seed crystals as growth surfaces, it was found that the boron content in the crystal grown from the (100) seed crystal was higher than that in the crystal grown from the (111) seed crystal. Additionally, the crystals grown with the FeCo solvent contained fewer metal elements (Fe and Co) compared to those produced with the FeNi solvent (Fe and Ni), which supported the growth of high-quality BDD single crystals. This indicated that the choice of growth planes significantly influences the incorporation of boron in diamonds. Our findings hold significant research value for the development of high-quality p-type diamond semiconductors using the HPHT method.
Keywords:  boron doping      diamond single crystal      high-pressure high-temperature (HPHT)      metal solvent  
Received:  14 May 2025      Revised:  11 August 2025      Accepted manuscript online:  14 August 2025
PACS:  81.05.ug (Diamond)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  61.72.S- (Impurities in crystals)  
  67.80.dj (Defects, impurities, and diffusion)  
Fund: The project was supported by the National Natural Science Foundation of China (Grant Nos. 12274373 and 12274372), the Natural Science Foundation of Henan Province (Grant Nos. 242300421155 and 252300421475), the Key Research Projects of Higher Education Institutions in Henan Province (Grant No. 25A140008), the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2023NSCQ-LZX0100 and CSTB2023NSCQMSX0362), Central Plains Science and Technology Innovation Youth Top Notch Talents, and Independent Innovation Project for Graduate Students of Zhengzhou University (Grant No. 20250450).
Corresponding Authors:  Liangchao Chen, Chao Fang     E-mail:  chenlc@zzu.edu.cn;fangchao1989@zzu.edu.cn

Cite this article: 

Hongbo Li(李鸿波), Wenhao Wang(王文豪), Yadong Li(李亚东), Liangchao Chen(陈良超), Zhuangfei Zhang(张壮飞), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Biao Wan(万彪), Chunlei Du(杜春雷), and Chao Fang(房超) Effect of metal solvent and growth surface on boron doping efficiency and impurity incorporation in HPHT-grown diamond single crystals 2025 Chin. Phys. B 34 118101

[1] Zhang J G, Wang X C, Shen B and Sun F H 2013 Int. J. Refract. Met. Hard Mat. 41 285
[2] Zhao Y S, Yan F Y and Liu X 2023 Diam. Relat. Mat. 136 110016
[3] Calzaferri G and Rytz R 1996 J. Phys. Chem. 100 11122
[4] Grot S A, Hatfield C W, Gildenblat G S, Badzian A R and Badzian T 1991 Appl. Phys. Lett. 58 1542
[5] Verhoeven H, Boettger E, Flöter A, Reiss H and Zachai R 1997 Diam. Relat. Mat. 6 298
[6] Mudryi A V, Larionova T P, Shakin I A, Gusakov G A, Dubrov G A and Tikhonov V V 2004 Semiconductors 38 520[7] Fedoseev D V, Vnukov S P, Bukhovets V L and Anikin B A 1986 Surf. Coat. Technol. 28 207
[8] Perez G, Marechal A, Chicot G, Lefranc P, Jeannin P O, Eon D and Rouger N 2020 Diam. Relat. Mat. 110 108154
[9] Raynaud C, Tournier D, Morel H and Planson D 2010 Diam. Relat. Mat. 19 1
[10] Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y and Jia X P 2011 Chin. Phys. B 20 028103
[11] Zhao X, Liu Y M, Liu L S, Song H Z, Hu T W, Lan J Y, Zhai Z F, Li D K, Wang C, Chen B, Jiang X and Huang N 2024 Ceram. Int. 50 33868
[12] Naoi S, Natsui K and Einaga Y 2016 Meet. Abstr. MA2016-02 3585
[13] Wang Z W, Wang Z Q, Liu Y, Zhao H, Li B W, Guo Q Y, Xu A K, Ma H A, Chen L C and Jia X P 2024 Int. J. Refract. Met. Hard Mat. 120 106608
[14] Lei Q S, Wu Z M, Geng X H, Zhao Y, Sun J and Xi J P 2006 Chin. Phys. B 15 213
[15] Hao L C, Chen Z A, Liu D Y, Zhao W K, Zhang M, Tang K, Zhu S M, Ye J D, Zhang R and Zheng Y D 2023 Chin. Phys. B 32 038101
[16] Ren Y, Li X G, LvW, Dong H Y, Cheng Q H, Yue F,Wöhrl N, Mendes J C, Yang X and Li Z X 2024 J. Mater. Sci. Mater. Electron. 35 525
[17] Teng Y, Liu D Y, Tang K, Zhao W K, Chen Z A, Huang Y M, Duan J J, Bian Y, Ye J D and Zhu S M 2022 Chin. Phys. B 31 128106
[18] Shang H and Jiang Y F 2024 Semicond. Sci. Technol. 39 115013
[19] Fujita N, Blumenau A T, Jones R, O berg S and Briddon P R 2006 Phys. Status Solidi A 203 3070
[20] Ichikawa K, Shimaoka T, Kato Y, Koizumi S and Teraji T 2020 J. Appl. Phys. 128 155302
[21] Yin L W, Li M S, Sun D S, Gong Z G, Yao Z Y, Cui J J and Hao Z Y 2001 J. Mater. Sci. 36 5585
[22] Srimongkon K, Ohmagari S, Kato Y, Amomkitbamrung V and Shikata S ichi 2016 Diam. Relat. Mat. 63 21
[23] Xie L, Yoneda A, Yoshino T, Yamazaki D, Tsujino N, Higo Y, Tange Y, Irifune T, Shimei T and Ito E 2017 Rev. Sci. Instrum. 88 093904
[24] Ekimov E A, Sidorov V A, Bauer E D, Mel’nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542
[25] Xie L, Yoneda A, Yoshino T, Fei H and Ito E 2016 High Press. Res. 36 105
[26] Chen L C, Miao X Y, He X M, Guo L S, Fang S, Wang Y, Wang Z K, Fang C, Ma H A and Jia X P 2018 J. Cryst. Growth 498 67
[27] Ekimov E A, Sidorov V A, Maslakov K, Sirotinkin B P, Krotova M D and Pleskov Y 2018 Diam. Relat. Mat. 89 101
[28] Ekimov E A, Sidorov V A, Chtchelkatchev N M, Lyapin S G and Khmelnitsky R A 2024 Diam. Relat. Mat. 142 110784
[29] Mortet V, Taylor A, Lambert N, Gedeonova Z, Fekete L, Lorincik J, Klimsa L, Kopecek J, Hubik P, Soban Z, Laposa A, Davydova M, Voves J, Posta A, Povolny V and Hazdra P 2021 Diam. Relat. Mat. 111 108223
[30] Chepurov A I, Yelisseyev A P, Zhimulev E I, Sonin V M, Fedorov I I and Chepurov A A 2008 Inorg. Mater. 44 377
[31] Panov M, Zubkov V, Solomnikova A and Klepikov I 2024 Mater. Sci. Eng: B 303 117334
[32] Lawson S C, Fisher D, Hunt D C and Newton M E 1998 J. Phys.: Condens. Matter 10 6171
[33] Miao X Y, Chen L C, Ma H A, Fang C, Guo L S, Fang S, Wang Y and Jia X P 2018 Cryst. Eng. Comm 20 7109
[34] Blank V D, Kuznetsov M S, Nosukhin S A, Terentiev S A and Denisov V N 2007 Diam. Relat. Mat. 16 800
[35] Strong H M and Chrenko R M 1971 J. Phys. Chem. 75 1838
[36] Li Y D, Cheng Y S, Su M J, Ran Q F, Wang C X, Ma H A, Fang C and Chen L C 2020 Chin. Phys. B 29 078101
[37] Veyan J F, De Obaldia E, Alcantar-Peña J J, Montes-Gutierrez J, Arellano-Jimenez M J, José Yacaman M and Auciello O 2018 Carbon 134 29
[38] Rani R, Panda K, Kumar N, Sankaran K J, Ganesan K and Lin I N 2018 J. Phys. Chem. C 122 8602
[39] Liu X B, Chen X, Ma H A, Jia X P, Wu J S, Yu T, Wang Y B, Guo J G, Petitgirard S, Bina C R and Jacobsen S D 2016 Sci. Rep. 6 30518
[40] Lei D Y, Liu C K, Dong C L, Wang S J, Zhang P, Li Y, Liu J X, Dong Y L and Zhou C X 2024 ACS Appl. Nano Mater. 7 25259
[41] Li G, Wang B D, Sun Q, Xu W Q and Han Y F 2019 J. Nanosci. Nanotechnol. 19 3343
[42] Conradie J and Erasmus E 2016 Polyhedron 119 142
[43] Wang Y H, Wu L M, Qu K G and Li B T 2025 Fuel 380 133072
[44] Ma C Y, He H X, Zhang H B, Xia F F and Li H X 2025 Surf. Coat. Technol. 496 131641
[45] Wang X Y, Jiang Y, Wang S S, Zhang L Y, Zhang T H and He P 2024 Microchem J. 201 110692
[46] Bagus P S, Nelin C J, Mergelsberg S T, Lahiri N and Ilton E S 2024 J. Chem. Phys. 161 164701
[1] Inclusions in large diamond single crystals at different temperatures of synthesis
Fei Han(韩飞), Shang-Sheng Li(李尚升), Xue-Fei Jia(贾雪菲), Wei-Qin Chen(陈玮琴), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Kun-Peng Yu(于昆鹏), Jian-Kang Wang(王健康), Yu-Min Wu(吴玉敏), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(2): 028103.
[2] Effects of B and N dopings and H2O adsorption on structural stability and field emission properties of cone-capped carbon nanotubes
Wang Yi-Jun(王益军), Wang Liu-Ding(王六定), Yang Min(杨敏), and Yan Cheng(严诚) . Chin. Phys. B, 2011, 20(11): 117304.
No Suggested Reading articles found!