| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Observation of exceptional points and realization of high sensitivity sensing in electric circuits |
| Jiaxi Cai(蔡家希)1, Xinyi Wang(王鑫怡)2, Xiaomin Zhang(张晓敏)1, Taoran Yue(乐陶然)1, and Jijun Wang(王纪俊)1† |
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2 School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China |
|
|
|
|
Abstract We explore the parity-time (PT)-symmetry breaking transition in a dimer circuit composed of two RLC resonators that are weakly coupled via an inductor. The energy behavior of this dimer circuit is reflected in the splitting or degeneracy of the systems eigenfrequencies as the gain-loss strength varies. Its dynamical properties can be described by a non-Hermitian Hamiltonian. The eigenfrequency spectrum of the system is divided by two critical points into three distinct regions: the symmetric region, the oscillatory growth region, and the fully exponential growth region. Building upon previous work on implementing the exceptional point (EP) in circuit systems, our study focuses on further exploring the variation patterns of circuit eigenfrequencies near the EP under weak coupling conditions. In addition, we construct a corresponding Dirac point (DP) circuit system for comparison. By leveraging the unique physical properties near both the EP and the DP, we further propose potential practical applications. Using perturbation theory and system simulations, we demonstrate that the square-root eigenfrequency splitting near the EP significantly enhances the sensitivity to small external perturbations, compared to the linear splitting behavior near the DP. This study presents promising prospects for next-generation sensing technologies.
|
Received: 28 May 2025
Revised: 03 July 2025
Accepted manuscript online: 07 July 2025
|
|
PACS:
|
84.30.-r
|
(Electronic circuits)
|
| |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
| |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
| |
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
| Fund: We gratefully acknowledge the financial support of the Natural Science Foundation of Jiangsu Province (Grant No. BK20231320). |
Corresponding Authors:
Jijun Wang
E-mail: wjj4461@ujs.edu.cn
|
| About author: 2025-128402-250946.pdf |
Cite this article:
Jiaxi Cai(蔡家希), Xinyi Wang(王鑫怡), Xiaomin Zhang(张晓敏), Taoran Yue(乐陶然), and Jijun Wang(王纪俊) Observation of exceptional points and realization of high sensitivity sensing in electric circuits 2025 Chin. Phys. B 34 128402
|
[1] Lee T E 2016 Phys. Rev. Lett. 116 133903 [2] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [3] Longhi S 2019 Phys. Rev. Lett. 122 237601 [4] Pan L, Chen X, Chen Y and Zhai H 2020 Nat. Phys. 16 767 [5] Cao Y, Li Y and Yang X 2021 Phys. Rev. B 103 075126 [6] Wang J H, Tao Y L and Xu Y 2022 Chin. Phys. Lett. 39 010301 [7] Yang X, Cao Y and Zhai Y 2022 Chin. Phys. B 31 010308 [8] Li Y, Ji X, Chen Y, Yan X and Yang X 2022 Phys. Rev. B 106 195425 [9] Li Y, Cao Y, Chen Y and Yang X 2022 J. Phys.: Condens. Matter 35 055401 [10] Zhang Y X, Zhang Z T, Yang Z S, Wei X Z and Liang B L 2024 Chin. Phys. B 33 060308 [11] Zhang S M, He T Y and Jin L 2024 Chin. Phys. Lett. 41 027201 [12] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [13] Bender C M 2007 Reports on Progress in Physics 70 947 [14] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 [15] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192 [16] Ji X, Ding W, Chen Y and Yang X 2024 Phys. Rev. B 109 125420 [17] Ji X and Yang X 2024 J. Phys.: Condens. Matter 36 243001 [18] Ji X, Geng H, Akhtar N and Yang X 2025 Phys. Rev. B 111 195419 [19] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632 [20] Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101 [21] Schindler J, Lin Z, Lee J M, Ramezani H, Ellis F M and Kottos T 2012 J. Phys. A: Math. Theor. 45 444029 [22] Lin Z, Schindler J, Ellis FMand Kottos T 2012 Phys. Rev. A 85 050101 [23] Ge L, Chong Y D and Stone A D 2012 Phys. Rev. A 85 023802 [24] Wiersig J 2014 Phys. Rev. Lett. 112 203901 [25] Sounas D L, Fleury R and Alu A 2015 Phys. Rev. Appl. 4 014005 [26] Fleury R, Sounas D and Alu A 2015 Nat. Commun. 6 5905 [27] Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76 [28] Wiersig J 2016 Phys. Rev. A 93 033809 [29] Assawaworrarit S, Yu X and Fan S 2017 Nature 546 387 [30] Chen W, Kaya O zdemir S, Zhao G, Wiersig J and Yang L 2017 Nature 548 192 [31] Xiao Z, Li H, Kottos T and Alu A 2019 Phys. Rev. Lett. 123 213901 [32] Dong Z, Li Z, Yang F, Qiu C W and Ho J S 2019 Nat. Electron. 2 335 [33] Assawaworrarit S and Fan S 2020 Nat. Electron. 3 273 [34] Ding K, Fang C and Ma G 2022 Nat. Rev. Phys. 4 745 [35] Wang C, Fu Z, Mao W, Qie J, Stone A D and Yang L 2023 Advances in Optics and Photonics 15 442 [36] Johnston A and Berloff N G 2024 Phys. Rev. Lett. 132 096901 [37] Gao H, Xue H, Gu Z, Liu T, Zhu J and Zhang B 2021 Nat. Commun. 12 1888 [38] Gu Z, Gao H, Cao P C, Liu T, Zhu X F and Zhu J 2021 Phys. Rev. Appl. 16 057001 [39] Xue H, Yang Y and Zhang B 2022 Nat. Rev. Mater. 7 974 [40] Zhang Q, Zhao L, Liu X, Feng X, Xiong L, Wu W and Qiu C 2023 Phys. Rev. Res. 5 L022050 [41] Liu C, Lan J, Gu Z and Zhu J 2023 Chin. Phys. Lett. 40 124301 [42] Li L, Lee C H and Gong J 2020 Phys. Rev. Lett. 124 250402 [43] Zhou L, Li H, Yi W and Cui X 2022 Commun. Phys. 5 252 [44] Liu D, Ren Z, Wong W C, Zhao E, He C, Pak K K, Jo G B and Li J 2024 Phys. Rev. A 109 053305 [45] Brandenbourger M, Locsin X, Lerner E and Coulais C 2019 Nat. Commun. 10 4608 [46] Yoshida T and Hatsugai Y 2019 Phys. Rev. B 100 054109 [47] Chen Y, Li X, Scheibner C, Vitelli V and Huang G 2021 Nat. Commun. 12 5935 [48] Cui X, Zhang R Y, Wang X, Wang W, Ma G and Chan C T 2023 Phys. Rev. Lett. 131 237201 [49] Ningyuan J, Owens C, Sommer A, Schuster D and Simon J 2015 Phys. Rev. X 5 021031 [50] Albert V V, Glazman L I and Jiang L 2015 Phys. Rev. Lett. 114 173902 [51] Helbig T, Hofmann T, Lee C H, Thomale R, Imhof S, Molenkamp LW and Kiessling T 2019 Phys. Rev. B 99 161114 [52] Bao J, Zou D, Zhang W, He W, Sun H and Zhang X 2019 Phys. Rev. B 100 201406 [53] Wang H, Ruan J and Zhang H 2019 Phys. Rev. B 99 075130 [54] Hofmann T, Helbig T, Lee C H, Greiter M and Thomale R 2019 Phys. Rev. Lett. 122 247702 [55] Yu R, Zhao Y X and Schnyder A P 2020 National Science Review 7 1288 [56] Zhang X X and Franz M 2020 Phys. Rev. Lett. 124 046401 [57] Ghorashi S A A, Li T and Sato M 2021 Phys. Rev. B 104 L161117 [58] Yu L W and Deng D L 2021 Phys. Rev. Lett. 126 240402 [59] Su L, Guo C X, Wang Y, Li L, Ruan X, Du Y, Chen S and Zheng D 2023 Chin. Phys. B 32 038401 [60] Yang H, Song L, Cao Y and Yan P 2024 Phys. Rep. 1093 1 [61] Langbein W 2018 Phys. Rev. A 98 023805 [62] Zhang M, Sweeney W, Hsu C W, Yang L, Stone A D and Jiang L 2019 Phys. Rev. Lett. 123 180501 [63] Wang H, Lai Y H, Yuan Z, Suh M G and Vahala K 2020 Nat. Commun. 11 1610 [64] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187 [65] Sakhdari M, Hajizadegan M, Zhong Q, Christodoulides D N, El- Ganainy R and Chen P Y 2019 Phys. Rev. Lett. 123 193901 [66] Wang C, Rao J, Chen Z, Zhao K, Sun L, Yao B, Yu T, Wang Y P and Lu W 2024 Nat. Phys. 20 1139 [67] Lau H K and Clerk A A 2018 Nat. Commun. 9 4320 [68] Bai K, Peng Z, Luo H G and An J H 2019 Phys. Rev. Lett. 123 040402 [69] Budich J C and Bergholtz E J 2020 Phys. Rev. Lett. 125 180403 [70] Bai K, Luo H G, Zhang W and Xiao M 2020 Phys. Rev. A 101 022115 [71] Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80 [72] Hassan A U, Zhen B, Soljačić M, Khajavikhan M and Christodoulides D N 2017 Phys. Rev. Lett. 118 093002 [73] Choi Y, Hahn C, Yoon JW, Song S H and Berini P 2017 Nat. Commun. 8 14154 [74] Zhang X L, Jiang T and Chan C T 2019 Light: Science & Applications 8 88 [75] Peng B, O zdemir S K, LiertzerM, ChenW, Kramer J, Yilmaz H,Wiersig J, Rotter S and Yang L 2016 Proc. Natl. Acad. Sci. USA 113 6845 [76] Xu Y, Zhang W, Shi J, Li Z, Huang X, Zou X, Tan W, Zhang X, Hu X, Wang X and Liu C 2020 Food Chemistry 322 126762 [77] Yin L, You T, El-Seedi H R, El-Garawani I M, Guo Z, Zou X and Cai J 2022 Food Chemistry 396 133707 [78] Adade S Y S S, Lin H, Haruna S A, Barimah A O, Jiang H, Agyekum A A, Johnson N A N, Zhu A, Ekumah J N, Li H and Chen Q 2022 Journal of Food Composition and Analysis 114 104834 [79] Wang L, Haruna S A, Ahmad W, Wu J, Chen Q and Ouyang Q 2022 Food Chemistry 388 132950 [80] Kang W, Lin H, Yao-Say Solomon Adade S, Wang Z, Ouyang Q and Chen Q 2023 Food Chemistry 405 134193 [81] Li H, Bei Q, Zhang W, Marimuthu M, Hassan M M, Haruna S A and Chen Q 2023 Food Chemistry 422 136202 [82] Ding X, Ahmad W, Wu J, Rong Y, Ouyang Q and Chen Q 2023 Food Chemistry 404 134761 [83] Wu H, Xie R, Hao Y, Pang J, Gao H, Qu F, Tian M, Guo C, Mao B and Chai F 2023 Food Chemistry 418 135961 [84] Lai J, Ding L, Liu Y, Fan C, You F, Wei J, Qian J and Wang K 2023 Food Chemistry 423 136285 [85] Zhou M, Dai C, Aheto J H and Zhang X 2024 Journal of Food Safety 44 e13163 [86] Li H, Murugesan A, Shoaib M, Sheng W and Chen Q 2024 Critical Reviews in Food Science and Nutrition pp. 1-33 [87] Adade S Y S S, Lin H, Johnson N A N, Nunekpeku X, Aheto J H, Ekumah J N, Kwadzokpui B A, Teye E, Ahmad W and Chen Q 2025 Trends in Food Science & Technology 156 104851 [88] Liu N, Zhang W, Liu F, Zhang M, Du C, Sun C, Cao J, Ji S and Sun H 2022 Agronomy 12 2139 [89] Mao H, Du X, Yan Y, Zhang X, Ma G, Wang Y, Liu Y, Wang B, Yang X and Shi Q 2022 International Journal of Agricultural and Biological Engineering 15 180 [90] Ding K, Ma G, Xiao M, Zhang Z Q and Chan C T 2016 Phys. Rev. X 6 021007 [91] Zhou Y, Wang H Y, Wang L F, Dong L and Huang Q A 2023 Journal of Physics Communications 7 065003 [92] Kononchuk R, Cai J, Ellis F, Thevamaran R and Kottos T 2022 Nature 607 697 [93] Yin K, Hao X, Huang Y, Zou J, Ma X and Dong T 2023 Phys. Rev. Appl. 20 L021003 [94] Pozar D M 2021 Microwave Engineering: Theory and Techniques (John Wiley & Sons) [95] Li Z, Li C, Xiong Z, Xu G, Wang Y R, Tian X, Yang X, Liu Z, Zeng Q, Lin R, Li Y, Lee J K W, Ho J S and Qiu C W 2023 Phys. Rev. Lett. 130 227201 [96] Mao W, Fu Z, Li Y, Li F and Yang L 2024 Science Advances 10 eadl5037 [97] Yuan H, Zhang W, Zhou Z, Wang W, Pan N, Feng Y, Sun H and Zhang X 2023 Advanced Science 10 2301128 [98] Li Z Z and Whaley K B 2024 Phys. Rev. Res. 6 023149 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|