| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
A magnetoelectric receiving antenna with a bridge-supporting structure for ultralow-frequency wireless communication |
| Boyu Xin(辛柏雨)1, Qianshi Zhang(张千十)1, Lizhi Hu(胡立志)2, Zishuo Fan(范梓烁)1, Jie Jiao(焦杰)3, Chun-Gang Duan(段纯刚)1, and Anran Gao(高安然)1,† |
1 Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China; 2 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 3 State Key Laboratory of Functional Crystals and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China |
|
|
|
|
Abstract The ultralow-frequency (ULF) miniaturized communication device is a development trend and has prospects in underwater environments. In this work, a magnetoelectric (ME) laminate was prepared by magnetostrictive Metglas and piezoelectric PMN-PT, and the electromechanical resonance (EMR) frequencies of the ME laminate were lowered through the bridge-supporting structure. Experiments showed that the supporting structure excited EMR frequencies of 646 Hz, 1089 Hz and 1506 Hz; the ME coefficients were 44.2 nC/Oe, 104.1 nC/Oe and 39.8 nC/Oe, respectively. Next, the ME laminate was assembled to a receiving antenna to receive binary frequency shift keying (2FSK) and binary amplitude shift keying (2ASK) signals accurately.
|
Received: 09 April 2025
Revised: 29 May 2025
Accepted manuscript online: 01 July 2025
|
|
PACS:
|
84.40.Ba
|
(Antennas: theory, components and accessories)
|
| |
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
| |
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
|
| Fund: This research was funded by the National Key Research and Development Program of China (Grant No. 2021YFA0716500) and the Shanghai Science and Technology Innovation Action Plan (Grant No. 21JC1402000). |
Corresponding Authors:
Anran Gao
E-mail: argao@clpm.ecnu.edu.cn
|
| About author: 2025-128401-250621.pdf |
Cite this article:
Boyu Xin(辛柏雨), Qianshi Zhang(张千十), Lizhi Hu(胡立志), Zishuo Fan(范梓烁), Jie Jiao(焦杰), Chun-Gang Duan(段纯刚), and Anran Gao(高安然) A magnetoelectric receiving antenna with a bridge-supporting structure for ultralow-frequency wireless communication 2025 Chin. Phys. B 34 128401
|
[1] Tu C, Chu Z Q, Spetzler B, Hayes P, Dong C Z, Liang X F, Chen H H, He Y F, Wei Y Y, Lisenkov I, Lin H, Lin Y H, McCord J, Faupel F, Quandt E and Sun N X 2019 Materials 12 2259 [2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759 [3] Hassanien A E, Breen M, Li M H and Gong S B 2020 Sci. Rep. 10 17006 [4] Zhang Q S, Xin B Y, Wu H Z, Hu L Z, Jiang T and Wang J 2023 IEEE Antennas Wirel. Propag. Lett. 23 498 [5] Shen Y, Gao J Q, Hasanyan D, Wang Y J, Li M H, Li J F and Viehland D 2012 Smart Mater. Struct. 21 115007 [6] Shen Y, McLaughlin K L, Gao J Q, Gray D, Hasanyan D and Wang Y J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59 2111 [7] Wu H Z, Tatarenko A, Bichurin M I and Wang Y J 2021 Nano Energy 83 105777 [8] Gao J Q, Wang Z G, Shen Y, Li M H, Wang Y J, Finkel P, Li J F and Viehland D 2012 Mater. Lett. 82 178 [9] Hu L Z, Wu H Z, You H R, Wang Y J and Gao A R 2021 Sens. Actuators A Phys. 332 113100 [10] Burch H C, Garraud A, Mitchell M F, Moore R C and Arnold D P 2018 IEEE Trans. Antennas Propag. 66 6265 [11] Bickford J A, McNabb R S, Ward P A, Freeman D K and Weinberg M S 2017 Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, July 9-14, 2017, San Diego, CA, USA, p. 1475 [12] Scott J F. Applications of modern ferroelectrics 2007 Science 315 954 [13] Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101 [14] Shi Y, Li N and Yang Y 2021 Chin. Phys. B 30 107503 [15] Zaeimbashi M, Lin H,Wang Z G, Chen H H, Emam S and Gao Y 2018 Proceedings of the IEEE International Microwave Biomedical Conference (IMBioC), June 14-15, 2018, Philadelphia, PA, USA, p. 205 [16] Zaeimbashi M, Lin H,Wang Z G, Chen H H, Emam S and Gao Y 2019 IEEE J. Electromagn. RF Microw. Med. Biol. 3 206 [17] Rangriz F, Khaleghi A and Balasingham I 2020 Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP), March 15-20, 2020, Copenhagen, Denmark, p. 1 [18] Yao Z, Wang Y E, Keller S and Carman G P 2015 IEEE Trans. Antennas Propag. 63 3335 [19] Gao J Q, Shen Y, Finkel P, Blottman J, Li J F and Viehland D 2012 Mater. Lett. 88 47 [20] Yang M T, Zhuang X, Sing M L C, Dolabdjian C, Goldstein D and Finkel P 2016 IEEE Sens. J. 16 5557 [21] Shen L G, Li M H, Gao J Q, Shen Y, Li J F, Viehland D, Zhuang X, Sing M L C, Cordier C, Saez S and Dolabdjian C 2011 J. Appl. Phys. 110 114510 [22] Jahns R, Greve H,Woltermann E, Quandt E and Knöchel R 2012 Sens. Actuators A Phys. 183 16 [23] Zhai J Y, Dong S X, Xing Z P, Gao J Q, Li J F and Viehland D 2009 J. Phys. D: Appl. Phys. 42 122001 [24] Park C S, Avirovik D, Bichurin M I, Petrov V M and Priya S 2012 Appl. Phys. Lett. 100 212901 [25] Nan T X, Lin H, Gao Y, et al. 2017 Nat. Commun. 8 296 [26] Dong C Z, He Y F, Li M H, Tu C, Chu Z Q, Liang X F, Chen H H,Wei Y Y, Zaeimbashi M andWang X J 2020 IEEE Antennas Wirel. Propag. Lett. 19 398 [27] Xu J R, Leung C M, Zhuang X, Li J F, Bhardwaj S, Volakis J and Viehland D 2019 Sensors 19 853 [28] Gao J Q, Shen Y,Wang Y J, Finkel P, Li J F and Viehland D 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 1545 [29] Wang Y L, Zhang R, Sun EW, SongWand CaoWW2013 Chin. Phys. Lett. 30 096301 [30] Fang Z Q and Hou Z L 2018 Chin. Phys. Lett. 35 054601 [31] Wu H Z, Jiang T, Liu Z, Fu S F, Cheng J W, You H R, Jiao J, Bichurin M, Sokolov O, Ivanov S and Wang Y J 2023 Adv. Electron. Mater. 9 2300096 [32] Niu Y P and Ren H 2022 IEEE Sens. J. 22 14008 [33] Zhai J Y, Xing Z P, Dong S X, Li J F and Viehland D 2006 Appl. Phys. Lett. 88 062510 [34] Alsaleh R, Nasir A and Alshaikh I 2023 Shock Vib. 2023 9524177 [35] Zhong Z Y, Zhang W M and Meng G 2013 Sensors 13 15880 [36] Yu Y G, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q and Zhang H W 2013 Chin. Phys. B 22 077504 [37] Henthorn S, Ford K L and O’Farrell T 2019 IEEE Trans. Antennas Propag. 68 111 [38] Schab K, Huang D Y and Adams J J 2019 IEEE Access 7 30213 [39] Hu H Y, Zhang C, Li Y M and Jia W 2016 Proceedings of the 6th International Conference on Electronics Information and Emergency Communication (ICEIEC), June 17-19, 2016, Beijing, China, p. 228 [40] Yue Y J, Liu L L and Yu R F 2014 Proceedings of the International Conference on Software Intelligence Technologies and Applications & International Conference on Frontiers of Internet of Things, December 4-6, 2014, Hsinchu, p. 212 [41] KimW, Tuppen C A, Alrashdan F, Singer A,Weirnick R and Robinson J T 2023 J. Appl. Phys. 134 094103 [42] Mukherjee D and Mallick D 2023 Appl. Phys. Lett. 122 014102 [43] Lü X Z, Chen X, Zhang W Q, Gu L and Bao W M 2023 IEEE Trans. Antennas Propag. 71 8493 [44] Mukherjee D and Mallick D A 2023 Proceedings of the IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), December 11-14, 2023, Ahmedabad, India, p. 1 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|