|
|
|
Efficient and controlled symmetric and asymmetric Bell-state transfers in a dissipative Jaynes-Cummings model |
| Qi-Cheng Wu(吴奇成)1,†,‡, Yu-Liang Fang(方玉亮)1,†, Yan-Hui Zhou(周彦辉)1, Jun-Long Zhao(赵军龙)1, Yi-Hao Kang(康逸豪)2, Qi-Ping Su(苏奇平)2, and Chui-Ping Yang(杨垂平)2,§ |
1 Quantum Information Research Center and Jiangxi Province Key Laboratory of Applied Optical Technology, Shangrao Normal University, Shangrao 334001, China; 2 School of Physics, Hangzhou Normal University, Hangzhou 311121, China |
|
|
|
|
Abstract Realizing efficient and controlled state transfers is necessary for implementing a wide range of classical and quantum information protocols. Recent studies have demonstrated that both asymmetric and symmetric state transfers can be achieved by encircling an exceptional point (EP) in non-Hermitian (NH) systems. However, the application of this phenomenon has been restricted to scenarios where an EP exists in single-qubit systems and is associated with a specific type of dissipation. In this work, we demonstrate efficient and controlled symmetric and asymmetric Bell-state transfers by modulating system parameters within a Jaynes-Cummings model while accounting for atomic spontaneous emission and cavity decay. The effective suppression of nonadiabatic transitions enables a symmetric exchange of Bell states irrespective of the encircling direction. Furthermore, we report a counterintuitive finding: the presence of an EP is not indispensable for implementing asymmetric state transfers in NH systems. We achieve perfect asymmetric Bell-state transfers even in the absence of an EP by dynamically orbiting around an approximate EP. Our work presents an approach to effectively and reliably manipulate entangled states with both symmetric and asymmetric characteristics, through dissipation engineering in NH systems.
|
Received: 09 September 2025
Revised: 30 September 2025
Accepted manuscript online: 09 October 2025
|
|
PACS:
|
03.67.-a
|
(Quantum information)
|
| |
42.50.Dv
|
(Quantum state engineering and measurements)
|
| |
74.40.Kb
|
(Quantum critical phenomena)
|
|
| Fund: This project was supported by the National Key Research and Development Program of China (Grant No. 2024YFA1408900), the National Natural Science Foundation of China (Grant Nos. 12264040, 12374333, and U21A20436), the Jiangxi Natural Science Foundation (Grant Nos. 20232BCJ23022 and 20252BAC240119), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301705), and the Jiangxi Province Key Laboratory of Applied Optical Technology (Grant No. 2024SSY03051). |
Corresponding Authors:
Qi-Cheng Wu, Chui-Ping Yang
E-mail: wuqi.cheng@163.com;yangcp@hznu.edu.cn
|
Cite this article:
Qi-Cheng Wu(吴奇成), Yu-Liang Fang(方玉亮), Yan-Hui Zhou(周彦辉), Jun-Long Zhao(赵军龙), Yi-Hao Kang(康逸豪), Qi-Ping Su(苏奇平), and Chui-Ping Yang(杨垂平) Efficient and controlled symmetric and asymmetric Bell-state transfers in a dissipative Jaynes-Cummings model 2026 Chin. Phys. B 35 010304
|
[1] Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752 [2] Ozdemir S, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783 [3] Heiss W D 2000 Phys. Rev. E 61 929 [4] Cartarius H, Main J and Wunner G 2007 Phys. Rev. Lett. 99 173003 [5] Zhang G Q and You J Q 2019 Phys. Rev. B 99 054404 [6] Zhang G Q, Chen Z, Xu D, Shammah N, Liao M, Li T F, Tong L M, Zhu S Y, Nori F and You J Q 2021 PRX Quantum 2 020307 [7] Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394 [8] Kato T 1995 Perturbation Theory for Linear Operators (Berlin: Springer) [9] Ashida Y, Gong Z and Ueda M 2020 Adv. Phys. 69 249 [10] Wu Q C, Zhao J L, Fang Y L, Zhang Y, Chen D X, Yang C P and Nori F 2023 Sci. China-Phys. Mech. Astron. 66 240312 [11] Zhang S M, He T Y and Jin L 2024 Chin. Phys. Lett. 41 027201 [12] Liu C, Lan J, Gu Z M and Zhu J 2023 Chin. Phys. Lett. 40 124301 [13] Zhang Y X, Zhang Z T, Yang Z S, Wei X Z and Liang B L 2024 Chin. Phys. B 33 060308 [14] Chen W, Abbasi M, Ha B, Erdamar S, Joglekar Y N and Murch K W 2022 Phys. Rev. Lett. 128 110402 [15] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187 [16] Wu Q C, Zhou Y H, Liu T, Kang Y H, Su Q P and Yang C P 2025 Chin. J. Phys. 98 1116 [17] Liu Z P, Zhang J, Ozdemir S K, Peng B, Jing H, L u X Y, Li C W, Yang L and Liu Y X 2016 Phys. Rev. Lett. 117 110802 [18] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 [19] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 [20] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005 [21] Guria C, Zhong Q, Ozdemir S K, Patil Y S S, El-Ganainy R and Harris J G E 2024 Nat. Commun. 15 1369 [22] Arkhipov I I, Miranowicz A, Minganti F, Ozdemir S and Nori F 2024 Phys. Rev. Lett. 133 113802 [23] Wu Q C, Zhao J L, Zhou Y H, Ye B L, Fang Y L, Zhou Z W and Yang C P 2025 Phys. Rev. A 111 022410 [24] Khandelwal S, Chen W J, Murch K W and Haack G 2024 Phys. Rev. Lett. 133 070403 [25] Berry M V 2011 J. Opt. 13 115701 [26] Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80 [27] Li A, Dong J, Wang J, Cheng Z, Ho J S, Zhang D, Wen J, Zhang X L, Chan C T, Alu A, Qiu C W and Chen L 2020 Phys. Rev. Lett. 125 187403 [28] Feilhauer J, Schumer A, Doppler J, Mailybaev A A, Bohm J, Kuhl U, Moiseyev N and Rotter S 2020 Phys. Rev. A 102 040201 [29] Ergoktas M S, Soleymani S, Kakenov N, Wang K, Smith T B, Bakan G, Balci S, Principi A, Novoselov K S, Ozdemir S K and Kocabas C 2022 Science 376 184 [30] Arkhipov I I, Miranowicz A, Minganti F, Ozdemir S and Nori F 2023 Nat. Commun. 14 2076 [31] Hassan A U, Galmiche G L, Harari G and LiKamWa P 2017 Phys. Rev. A 96 052129 [32] Tang Z, Chen T and Zhang X 2023 Laser Photonics Rev. 18 2300794 [33] Hassan A U, Zhen B, Soljacic M, Khajavikhan M and Christodoulides D N 2017 Phys. Rev. Lett. 118 093002 [34] Tang X, Chen T and Zhang X D 2025 Phys. Rev. Research 7 013159 [35] Zhang X L, Jiang T and Chan C T 2019 Light Sci. Appl. 8 88 [36] Nasari H, Galmiche G L, Aviles H E L, Schumer A, Hassan A U, Zhong Q, Rotter S, LiKamWa P, Christodoulides D N and Khajavikhan M 2022 Nature 605 256 [37] Verstraete F, Wolf M M and Cirac J I 2009 Nat. Phys. 5 633 [38] Wu Q C, Zhou Y H, Ye B L, Liu T and Yang C P 2021 New J. Phys. 23 113005 [39] Zou J, Zhang S and Tserkovnyak Y 2022 Phys. Rev. B 106 180406 [40] Schine N, Young A W, Eckner W J, Martin M J and Kaufman A M 2022 Nat. Phys. 18 1067 [41] Tang Z, Chen T, Tang X and Zhang X D 2024 Light Sci. Appl. 13 167 [42] Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195 [43] Bishop L S, Ginossar E and Girvin S M 2010 Phys. Rev. Lett. 105 100505 [44] Minganti F, Miranowicz A, Chhajlany R W, Arkhipov I I and Nori F 2020 Phys. Rev. A 101 062112 [45] Naghiloo M, Abbasi M, Joglekar Y N and Murch K W 2019 Nat. Phys. 15 1232 [46] Zhou Y H, Shen H Z, Zhang X Y and Yi X X 2018 Phys. Rev. A 97 043819 [47] Liu C and Huang J F 2024 Sci. China-Phys. Mech. Astron. 67 240312 [48] Li J, Yu R and Wu Y 2015 Phys. Rev. A 92 053837 [49] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972 [50] Chen W, Ozdemir S, Zhao G, Wiersig J and Yang L 2017 Nature 548 192 [51] Arkhipov I I, Miranowicz A, Nori F, Ozdemir S K and Minganti F 2023 Phys. Rev. Res. 5 043092 [52] Khudaverdyan M, Alt W, Kampschulte T, Reick S, Thobe A, Widera A and Meschede D 2009 Phys. Rev. Lett. 103 123006 [53] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281 [54] Miroshnychenko Y, Alt W, Dotsenko I, Forster L, Khudaverdyan M, Meschede D and Rauschenbeutel 2006 Nature 442 151 [55] Trupke M, Hinds E A, Eriksson S, Curtis E A, Moktadir Z, Kukharenka E and Kraft M 2005 Appl. Phys. Lett. 87 211106 [56] Mizuno K, Pae J, Nozokido T and Furuya K 1987 Nature 328 45 [57] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press) [58] Kienzler D, Lo H-Y, Keitch B, de Clercq L, Leupold F, Lindenfelser F, Marinelli M, Negnevitsky V and Home J P 2015 Science 347 53 [59] Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Zhang P, Xu J, Yang Y and Zhang T 2019 Phys. Rev. Lett. 123 233604 [60] Wang J, Huang D Y, Zhou X L, Shen Z M, He S J, Huang Q Y, Liu Y J, Li C F and Guo G C 2025 Phys. Rev. Lett. 134 240802 [61] Steck D A Rubidium 87 D line data available online at http://steck.us/alkalidata [62] Xing Y, Qi L, Cao J, Wang D Y, Bai C H, Wang H F, Zhu A D and Zhang S 2017 Phys. Rev. A 96 043810 [63] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975 [64] Wu Q C, Zhou Y H, Ye B L, Liu T, Zhao J L, Chen D X and Yang C P 2022 Ann. Phys. 534 2100393 [65] Zheng X W, Zheng J C, Pan X F, Lin L H, Han P R and Li P B 2025 Phys. Rev. A 111 012402 [66] Liu B B, Su S L, Zuo Y L, He Q, Chen G, Nori F and Jing H 2024 arXiv: 2407.08525 [67] Feyisa C G, You J S, Ku H Y and Jen H H 2025 Quantum Sci. Technol. 10 025021 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|