Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 084205    DOI: 10.1088/1674-1056/ad4ff8
RAPID COMMUNICATION Prev   Next  

Mode coupling with Fabry-Perot modes in photonic crystal slabs

Ken Qin(秦恳)1, Peng Hu(胡鹏)2, Jie Liu(刘杰)1, Hong Xiang(向红)1,†, and De-Zhuan Han(韩德专)1,‡
1 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China;
2 School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
Abstract  Fabry-Perot (FP) modes are a class of fundamental resonances in photonic crystal (PhC) slabs. Owing to their low quality factors, FP modes are frequently considered as background fields with their resonance nature being neglected. Nevertheless, FP modes can play important roles in some phenomena, as exemplified by their coupling with guided resonance (GR) modes to achieve bound states in the continuum (BIC). Here, we further demonstrate the genuine resonance mode capability of FP modes PhC slabs. Firstly, we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes. Secondly, we construct exceptional points (EPs) in both momentum and parameter spaces through the coupling of FP and GR modes. Furthermore, we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology. This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes, facilitating the realization of desired functionalities through mode coupling.
Keywords:  Fabry-Perot mode      photonic crystal slab      mode coupling      exceptional point  
Received:  13 April 2024      Revised:  22 May 2024      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074049 and 12347101).
Corresponding Authors:  Hong Xiang, De-Zhuan Han     E-mail:  xhong@cqu.edu.cn;dzhan@cqu.edu.cn

Cite this article: 

Ken Qin(秦恳), Peng Hu(胡鹏), Jie Liu(刘杰), Hong Xiang(向红), and De-Zhuan Han(韩德专) Mode coupling with Fabry-Perot modes in photonic crystal slabs 2024 Chin. Phys. B 33 084205

[1] Saleh B E A, Teich M C 2007 Fundamentals of Photonics 2nd edn. (New Jersy: John Wiley & Sons, Inc. Hoboken) pp. 243-288
[2] Gellineau A, Yu-Po Wong and Solgaard O 2014 2014 International Conference on Optical MEMS and Nanophotonics, August 17-21, 2014, Glasgow, UK, p. 57
[3] Gellineau A, Wong Y P and Solgaard O 2013 Opt. Lett. 38 4992
[4] Fan S and Joannopoulos J D 2002 Phys. Rev. B 65 235112
[5] Joannopoulos J D, John S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light, 2nd edn. (New Jersy: Princeton University Press) pp. 44-65
[6] Zhang Z, Wang F, Wang H, Hu Y, Yin X, Hu W and Peng C 2022 Opt. Lett. 47 2875
[7] Zhou H, Zhen B, Hsu C W, Miller O D, Johnson S G, Joannopoulos J D and Soljačić M 2016 Optica 3 1079
[8] Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D and Soljačić M 2013 Nature 499 188
[9] Kang M, Zhang S, Xiao M and Xu H 2021 Phys. Rev. Lett. 126 117402
[10] Cerjan A, Hsu C W and Rechtsman M C 2019 Phys. Rev. Lett. 123 023902
[11] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater. 1 16048
[12] Bulgakov E N and Sadreev A F 2008 Phys. Rev. B 78 075105
[13] Hu P, Wang J, Jiang Q, Wang J, Shi L, Han D, Zhang Z Q, Chan C T and Zi J 2022 Optica 9 1353
[14] Heiss W D 2012 J. Phys. A: Math. Theor. 45 444016
[15] Miri M A and Alù A 2019 Science 363 eaar7709
[16] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[17] Hassan A U, Galmiche G L, Harari G, LiKamWa P, Khajavikhan M, Segev M and Christodoulides D N 2017 Phys. Rev. A 96 052129
[18] Wang C, Jiang X, Zhao G, Zhang M, Hsu C W, Peng B, Stone A D, Jiang L and Yang L 2020 Nat. Phys. 16 334
[19] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187
[20] Chen W, Kaya Özdemir Ş, Zhao G, Wiersig J and Yang L 2017 Nature 548 192
[21] Bai K, Fang L, Liu T R, Li J Z, Wan D and Xiao M 2023 Nat. Sci. Rev. 10 nwac259
[22] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975
[23] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[24] Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80
[25] Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76
[26] Hassan A U, Zhen B, Soljačić M, Khajavikhan M and Christodoulides D N 2017 Phys. Rev. Lett. 118 093002
[27] Ghosh S N and Chong Y D 2016 Sci. Rep. 6 19837
[28] Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D and Soljačić M 2015 Nature 525 354
[29] Yin X, Inoue T, Peng C and Noda S 2023 Phys. Rev. Lett. 130 056401
[30] Luo L, Shao Y, Li J, Fan R, Peng R, Wang M, Luo J and Lai Y 2021 Opt. Express 29 14345
[31] Kamiński P M, Taghizadeh A, Breinbjerg O, Mørk J and Arslanagić S 2017 Opt. Lett. 42 2866
[32] Wonjoo Suh, Zheng Wang, and Shanhui Fan 2004 IEEE J. Quantum Electron. 40 1511
[33] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M and Zhen B 2018 Science 359 1009
[34] Ping S 2006 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena 2nd edn. (Berlin: Springer Berlin Heidelberg) pp. 45-116
[35] Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783
[36] Chen W, Yang Q, Chen Y and Liu W 2021 Proc. Natl. Acad. Sci. USA 118 e2019578118
[1] Design of a high sensitivity and wide range angular rate sensor based on exceptional surface
Xinsheng Ding(丁鑫圣), Wenyao Liu(刘文耀), Shixian Wang(王师贤), Yu Tao(陶煜), Yanru Zhou(周彦汝), Yu Bai(白禹), Lai Liu(刘来), Enbo Xing(邢恩博), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2024, 33(8): 084204.
[2] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[3] Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity
Jingtong Geng(耿靖童), Shuyi Xu(徐书逸), Ting Jin(靳婷), Shulin Ding(丁舒林), Liu Yang(杨柳), Ying Wang(王颖), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2024, 33(1): 014208.
[4] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[5] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[6] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[7] Tailoring topological corner states in photonic crystals by near- and far-field coupling effects
Zhao-Jian Zhang(张兆健), Zhi-Hao Lan(兰智豪), Huan Chen(陈欢), Yang Yu(于洋), and Jun-Bo Yang(杨俊波). Chin. Phys. B, 2023, 32(12): 124201.
[8] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[9] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[10] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[11] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[12] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[13] Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(10): 100309.
[14] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[15] Influence of warm eddies on sound propagation in the Gulf of Mexico
Yao Xiao(肖瑶), Zhenglin Li(李整林), Jun Li(李鋆), Jiaqi Liu(刘佳琪), Karim G Sabra. Chin. Phys. B, 2019, 28(5): 054301.
No Suggested Reading articles found!