Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 124206    DOI: 10.1088/1674-1056/ade8df
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase controlled single photon transport in giant atoms coupling to one-dimensional waveguide

Yan-Yan Song(宋艳艳)1, Yao Zang(臧耀)1, Yunning Lu(路云宁)1, Zhao Liu(刘兆)1, Xiao-San Ma(马小三)1,2, and Mu-Tian Cheng(程木田)1,2,†
1 School of Electrical Engineering & Information, Anhui University of Technology, Maanshan 243002, China;
2 Anhui Provincial Key Laboratory of Power Electronics & Motion Control, Anhui University of Technology, Maanshan 243002, China
Abstract  The phase-controlled single-photon transport properties of a giant atom coupled to a one-dimensional waveguide are investigated. The coupling between the giant atom and the waveguide is modeled as a multi-point interaction. The coupling strengths between the giant atom and the waveguide are represented as complex numbers with associated phases. Analytical expressions for the scattering amplitudes are obtained using the real-space Hamiltonian method. The results show that the characteristics of the scattering spectra, including the positions of peaks (or dips) and the full width at half maximum, can be tuned by adjusting the phase difference between the coupling strengths. Further calculations reveal that the scattering spectra can be either super-broadened or sub-broadened. The conditions for achieving perfect nonreciprocal single-photon transport in the Markovian regime are also discussed. Moreover, we demonstrate the control of single-photon transport through phase differences in the non-Markovian regime. Our results may find applications in the design of quantum devices operating at the single-photon level, based on waveguide quantum electrodynamics.
Keywords:  giant atom      waveguide      nonreciprocal single photon scattering  
Received:  06 April 2025      Revised:  04 June 2025      Accepted manuscript online:  27 June 2025
PACS:  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12475010 and 119075023), the Major Project of the Natural Science Foundation of Anhui Provincial Department of Education (Grant No. 2022AH040053), and the Key Natural Scientific Research Projects of Universities in Anhui Province (Grant Nos. 2023AH051078 and 2023AH051125).
Corresponding Authors:  Mu-Tian Cheng     E-mail:  mtcheng@ahut.edu.cn

Cite this article: 

Yan-Yan Song(宋艳艳), Yao Zang(臧耀), Yunning Lu(路云宁), Zhao Liu(刘兆), Xiao-San Ma(马小三), and Mu-Tian Cheng(程木田) Phase controlled single photon transport in giant atoms coupling to one-dimensional waveguide 2025 Chin. Phys. B 34 124206

[1] Yang Y, Chapman R J, Youssry A, Haylock B, Lenzini F, Lobino M and Peruzzo A 2025 npj Quant. Inf. 11 19
[2] Fang X X, Du H Y, Zhang X, Wang L, Chen F and Lu H 2025 Laser Photon. Rev. 19 2400782
[3] Xing F, Lu Y and Liao Z 2022 Opt. Express 30 22963
[4] Zheng H, Gauthier D J and Baranger H U 2013 Phys. Rev. Lett. 111 090502
[5] Gonzalez-Tudela A, Paulisch V, Kimble H J and Cirac J I 2017 Phys. Rev. Lett. 118 213601
[6] Kim C M, Kim N C, Ko M C, Ryom J S, Ri S R and Ri J J 2024 Quantum Inf. Process 23 394
[7] Song G Z, Guo J L, Liu Q, Wei H R and Long G L 2021 Phys. Rev. A 104 012608
[8] Sheremet A S, Petrov M I, Iorsh I V, Poshakinskiy A V and Poddubny A N 2023 Rev. Mod. Phys. 95 015002
[9] Jain K, Ruks L, Kien le F and Busch T 2024 Phys. Rev. Res. 6 033311
[10] Scully M O and Zubairy M S 1997 Quantum Optics 1st edn. (Cambridge: Cambridge University Press)
[11] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[12] Kannan B, Ruckriegel M J, Campbell D L, Frisk Kockum A, Braumuller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedziel-ski B M and others 2020 Nature 583 775
[13] Andersson G, Suri B, Guo L, Aref T and Delsing P 2019 Nat. Phys. 15 1123
[14] Guo A L, Zhu L T, Guo G C, Lin Z R, Li C F and Tu T 2024 Phys. Rev. A 109 033711
[15] Xu L and Guo L 2024 New J. Phys. 26 013025
[16] Kuo P C, Lin J D, Huang Y C and Chen Y N 2023 Opt. Express 31 42285
[17] Liu J Y, Jin J W, Liu H Y, Ming Y and Yang R C 2023 Quantum Inf. Process 22 74
[18] Noachtar D D, Knorzer J and Jonsson R H 2022 Phys. Rev. A 106 013702
[19] Wang X and Li H R 2022 Quantum Sci. Technol. 7 035007
[20] Du L, Zhang Y, Wu J H, Kockum A F and Li Y 2022 Phys. Rev. Lett. 128 223602
[21] Zou J P, Gong R Y and Xiang Z L 2022 Front. Phys. 10 896827
[22] Zhang Y X, Carceller C R, Kjaergaard Mo and Sørensen A S 2021 Phys. Rev. Lett. 127 233601
[23] Vadiraj A M, Ask A, McConkey T G, Nsanzineza I, Chang C W S, Kockum A F and Wilson C M 2021 Phys. Rev. A 103 023710
[24] Kockum A F, Johansson G and Nori F 2018 Phys. Rev. Lett. 120 140404
[25] Soro A and Kockum A F 2022 Phys. Rev. A 105 023712
[26] Qiu Q Y, Zheng L L, Wu Y and Lu X Y 2025 Laser Photon. Rev. 19 2401395
[27] Cai G, Lu Y, Ma X S, Cheng M T and Huang X 2021 Phys. Rev. Lett. 126 043602
[28] Guo S, Wang Y, Purdy T and Taylor J 2020 Phys. Rev. A 102 033706
[29] Frisk Kockum A, Delsing P and Johansson G 2014 Phys. Rev. A 90 013837
[30] Zhao W and Wang Z 2020 Phys. Rev. A 101 053855
[31] Zhao W, Tian T and Wang Z 2024 Phys. Rev. A 109 063708
[32] Cai G, Lu Y, Liu Z, Cheng M T and Ma X S 2024 Results Phys. 57 107381
[33] Ma X S, Quan J H, Lu Y N and Cheng M T 2024 Eur. Phys. J. D 78 5
[34] Li X, Zhao W and Wang Z 2023 Opt. Lett. 48 3595
[35] Zheng J C, Dong X L, Chen J Q, Hei X L, Pan X F, Yao X Y, Ren Y M, Qiao Y F and Li P B 2024 Phys. Rev. A 109 063709
[36] Luo W B, Yin X L and Liao J Q 2024 Adv. Quantum Technol. 7 2400030
[37] Wang D W, Zhao C, Yan Y T, Yang J, Wang Z and Zhou L 2024 Phys. Rev. A 109 053720
[38] Cheng W, Wang Z and Liu Y X 2022 Phys. Rev. A 106 033522
[39] Peng Y P and Jia W Z 2023 Phys. Rev. A 108 043709
[40] Jia W Z and Yu M T 2024 Opt. Express 32 9495
[41] Zhou J X, Zhu Z H, Zhang Y Q, Chen K K, Peng Z H, Chai Y F, Xiong Z Z and Tan L 2024 Laser Phys. Lett. 21 055202
[42] Zhang Y Q, Zhu Z H, Chen K K, Peng Z H, Yin W J, Yang Y, Zhao Y Q, Lu Z Y, Chai Y F, Xiong Z Z and others 2022 Front. Phys. 10 1054299
[43] Sun X J, Liu W X, Chen H and Li H R 2023 Commun. Theo. Phys. 75 035103
[44] Cai Y, Ma K J, Liu J, Guo G F, Tan L and Liu W M 2024 New J. Phys. 26 113003
[45] Chen Y T, Du L, Wang Z, Artoni M, La Rocca G C and Wu J H 2024 Phys. Rev. A 109 063710
[46] Yang D C, Cheng M T, Ma X S, Xu J, Zhu C and Huang X S 2018 Phys. Rev. A 98 063809
[47] Chen Y T, Du L, Guo L, Wang Z, Zhang Y, Li Y and Wu J H 2022 Commun. Phys. 5 215
[48] Zhang X, Li H, Zeng R, Hu M, Xu M, Zhou X, Lan Y, Xia X, Xu J and Yang Y 2024 Commun. Theo. Phys. 76 115501
[49] Chen K, Zhu Z, Zhang Y, Fu X, Peng Z, Lu Z, Chai Y, Xiong Z and Tan L 2024 Laser Phys. Lett. 21 095203
[50] Zhou J, Yin X L and Liao J Q 2023 Phys. Rev. A 107 063703
[51] Du L, Cai M R, Wu J H, Wang Z and Li Y 2021 Phys. Rev. A 103 053701
[52] Li H, Zhang X, Zeng R, Hu M, Xu M, Zhou X, Xia X, Xu J and Yang Y 2024 Opt. Express 32 38292
[53] Li S Y, Zhang Z Q, Du L, Li Y and Wu H 2024 Phys. Rev. A 109 063703
[54] Liu N, Wang X, Wang X, Ma X S and Cheng M T 2022 Opt. Express 30 23428
[55] Liu W, Lin Y, Li J and Wang X 2022 Front. Phys. 10 894115
[56] Cai G, Lu Y, Ma X S, Cheng M T and Huang X 2023 Opt. Express 31 33015
[57] Cai Q Y and Jia W Z 2021 Phys. Rev. A 104 033710
[58] Liu J, Cai Y, Ma K J, Tan L and Liu W M 2024 Phys. Scr. 99 105119
[59] Xu L and Guo L 2025 arXiv:2502.08156[hep-ph]
[1] Guiding and magneto-optical properties of TGG waveguide by proton implantation combined with femtosecond laser ablation
Chun-Xiao Liu(刘春晓), Zi-Hao Wang(王子昊), Bei-Er Guo(郭贝尔), Rui Yuan(袁睿), Yi-Fan Wang(王逸凡), Yu-Hang Zhou(周雨航), Jia-Bin Sun(孙家彬), Liao-Lin Zhang(张料林), and Hai-Tao Guo(郭海涛). Chin. Phys. B, 2025, 34(5): 054207.
[2] Experimental demonstration of silicon nitride waveguide gratings with excellent efficiency and divergence angle
Zhaozhen Chen(陈兆震), Wenling Li(李文玲), Qian Wang(王乾), Enfeng Liu(刘恩峰), Xinqun Zhang(张新群), Jingwei Liu(刘敬伟), and Zhengsheng Han(韩郑生). Chin. Phys. B, 2025, 34(5): 054206.
[3] Quantum manipulation of asymmetric Einstein-Podolsky-Rosen steering in controllable dynamical Casimir arrays
Ruinian Li(李瑞年), Yumei Long(龙玉梅), and Xue Zhang(张雪). Chin. Phys. B, 2025, 34(2): 020307.
[4] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[5] Radiation of a TM mode from an open end of a three-layer dielectric capillary
Sergey N. Galyamin and Alexandr M. Altmark. Chin. Phys. B, 2024, 33(7): 074102.
[6] Unveiling the in-plane anisotropic dielectric waveguide modes in α-MoO3 flakes
Ying Liao(廖莹) and Jianing Chen(陈佳宁). Chin. Phys. B, 2024, 33(7): 078401.
[7] Frequency-tunable single-photon router based on a microresonator containing a driven three-level emitter
Jin-Song Huang(黄劲松), Jing-Lan Hu(胡菁兰), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(6): 064202.
[8] Optimize Purcell filter design for reducing influence of fabrication variation
Xiao Cai(蔡晓), Yi-Biao Zhou(周翼彪), Wen-Long Yu(于文龙), Kang-Lin Xiong(熊康林), and Jia-Gui Feng(冯加贵). Chin. Phys. B, 2024, 33(6): 068501.
[9] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[10] Simultaneous guidance of electromagnetic and elastic waves via glide symmetry phoxonic crystal waveguides
Lin-Lin Lei(雷林霖), Ling-Juan He(何灵娟), Qing-Hua Liao(廖清华), Wen-Xing Liu(刘文兴), and Tian-Bao Yu(于天宝). Chin. Phys. B, 2024, 33(3): 034202.
[11] Singular optical propagation properties of two types of one-dimensional anti-PT-symmetric periodic ring optical waveguide networks
Yanglong Fan(樊阳龙), Xiangbo Yang(杨湘波), Huada Lian(练华达), Runkai Chen(陈润楷),Pengbo Zhu(朱蓬勃), Dongmei Deng(邓冬梅), Hongzhan Liu(刘宏展), and Zhongchao Wei(韦中超). Chin. Phys. B, 2024, 33(3): 034201.
[12] Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide
Xin Zhao(赵鑫), Zhong Du(杜仲), Li-Jian Zhou(周立俭), Rong-Xiang Liu(刘荣香), and Xu-Hu Wang(王绪虎). Chin. Phys. B, 2024, 33(11): 110204.
[13] Generation of broadband polarization-orthogonal photon pairs via the dispersion-engineered thin-film lithium niobate waveguide
Ji-Ning Zhang(张继宁), Tong-Yu Zhang(张同宇), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(11): 110301.
[14] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[15] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
No Suggested Reading articles found!