| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Phase controlled single photon transport in giant atoms coupling to one-dimensional waveguide |
| Yan-Yan Song(宋艳艳)1, Yao Zang(臧耀)1, Yunning Lu(路云宁)1, Zhao Liu(刘兆)1, Xiao-San Ma(马小三)1,2, and Mu-Tian Cheng(程木田)1,2,† |
1 School of Electrical Engineering & Information, Anhui University of Technology, Maanshan 243002, China; 2 Anhui Provincial Key Laboratory of Power Electronics & Motion Control, Anhui University of Technology, Maanshan 243002, China |
|
|
|
|
Abstract The phase-controlled single-photon transport properties of a giant atom coupled to a one-dimensional waveguide are investigated. The coupling between the giant atom and the waveguide is modeled as a multi-point interaction. The coupling strengths between the giant atom and the waveguide are represented as complex numbers with associated phases. Analytical expressions for the scattering amplitudes are obtained using the real-space Hamiltonian method. The results show that the characteristics of the scattering spectra, including the positions of peaks (or dips) and the full width at half maximum, can be tuned by adjusting the phase difference between the coupling strengths. Further calculations reveal that the scattering spectra can be either super-broadened or sub-broadened. The conditions for achieving perfect nonreciprocal single-photon transport in the Markovian regime are also discussed. Moreover, we demonstrate the control of single-photon transport through phase differences in the non-Markovian regime. Our results may find applications in the design of quantum devices operating at the single-photon level, based on waveguide quantum electrodynamics.
|
Received: 06 April 2025
Revised: 04 June 2025
Accepted manuscript online: 27 June 2025
|
|
PACS:
|
42.50.Nn
|
(Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)
|
| |
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
| |
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
| Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12475010 and 119075023), the Major Project of the Natural Science Foundation of Anhui Provincial Department of Education (Grant No. 2022AH040053), and the Key Natural Scientific Research Projects of Universities in Anhui Province (Grant Nos. 2023AH051078 and 2023AH051125). |
Corresponding Authors:
Mu-Tian Cheng
E-mail: mtcheng@ahut.edu.cn
|
Cite this article:
Yan-Yan Song(宋艳艳), Yao Zang(臧耀), Yunning Lu(路云宁), Zhao Liu(刘兆), Xiao-San Ma(马小三), and Mu-Tian Cheng(程木田) Phase controlled single photon transport in giant atoms coupling to one-dimensional waveguide 2025 Chin. Phys. B 34 124206
|
[1] Yang Y, Chapman R J, Youssry A, Haylock B, Lenzini F, Lobino M and Peruzzo A 2025 npj Quant. Inf. 11 19 [2] Fang X X, Du H Y, Zhang X, Wang L, Chen F and Lu H 2025 Laser Photon. Rev. 19 2400782 [3] Xing F, Lu Y and Liao Z 2022 Opt. Express 30 22963 [4] Zheng H, Gauthier D J and Baranger H U 2013 Phys. Rev. Lett. 111 090502 [5] Gonzalez-Tudela A, Paulisch V, Kimble H J and Cirac J I 2017 Phys. Rev. Lett. 118 213601 [6] Kim C M, Kim N C, Ko M C, Ryom J S, Ri S R and Ri J J 2024 Quantum Inf. Process 23 394 [7] Song G Z, Guo J L, Liu Q, Wei H R and Long G L 2021 Phys. Rev. A 104 012608 [8] Sheremet A S, Petrov M I, Iorsh I V, Poshakinskiy A V and Poddubny A N 2023 Rev. Mod. Phys. 95 015002 [9] Jain K, Ruks L, Kien le F and Busch T 2024 Phys. Rev. Res. 6 033311 [10] Scully M O and Zubairy M S 1997 Quantum Optics 1st edn. (Cambridge: Cambridge University Press) [11] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623 [12] Kannan B, Ruckriegel M J, Campbell D L, Frisk Kockum A, Braumuller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedziel-ski B M and others 2020 Nature 583 775 [13] Andersson G, Suri B, Guo L, Aref T and Delsing P 2019 Nat. Phys. 15 1123 [14] Guo A L, Zhu L T, Guo G C, Lin Z R, Li C F and Tu T 2024 Phys. Rev. A 109 033711 [15] Xu L and Guo L 2024 New J. Phys. 26 013025 [16] Kuo P C, Lin J D, Huang Y C and Chen Y N 2023 Opt. Express 31 42285 [17] Liu J Y, Jin J W, Liu H Y, Ming Y and Yang R C 2023 Quantum Inf. Process 22 74 [18] Noachtar D D, Knorzer J and Jonsson R H 2022 Phys. Rev. A 106 013702 [19] Wang X and Li H R 2022 Quantum Sci. Technol. 7 035007 [20] Du L, Zhang Y, Wu J H, Kockum A F and Li Y 2022 Phys. Rev. Lett. 128 223602 [21] Zou J P, Gong R Y and Xiang Z L 2022 Front. Phys. 10 896827 [22] Zhang Y X, Carceller C R, Kjaergaard Mo and Sørensen A S 2021 Phys. Rev. Lett. 127 233601 [23] Vadiraj A M, Ask A, McConkey T G, Nsanzineza I, Chang C W S, Kockum A F and Wilson C M 2021 Phys. Rev. A 103 023710 [24] Kockum A F, Johansson G and Nori F 2018 Phys. Rev. Lett. 120 140404 [25] Soro A and Kockum A F 2022 Phys. Rev. A 105 023712 [26] Qiu Q Y, Zheng L L, Wu Y and Lu X Y 2025 Laser Photon. Rev. 19 2401395 [27] Cai G, Lu Y, Ma X S, Cheng M T and Huang X 2021 Phys. Rev. Lett. 126 043602 [28] Guo S, Wang Y, Purdy T and Taylor J 2020 Phys. Rev. A 102 033706 [29] Frisk Kockum A, Delsing P and Johansson G 2014 Phys. Rev. A 90 013837 [30] Zhao W and Wang Z 2020 Phys. Rev. A 101 053855 [31] Zhao W, Tian T and Wang Z 2024 Phys. Rev. A 109 063708 [32] Cai G, Lu Y, Liu Z, Cheng M T and Ma X S 2024 Results Phys. 57 107381 [33] Ma X S, Quan J H, Lu Y N and Cheng M T 2024 Eur. Phys. J. D 78 5 [34] Li X, Zhao W and Wang Z 2023 Opt. Lett. 48 3595 [35] Zheng J C, Dong X L, Chen J Q, Hei X L, Pan X F, Yao X Y, Ren Y M, Qiao Y F and Li P B 2024 Phys. Rev. A 109 063709 [36] Luo W B, Yin X L and Liao J Q 2024 Adv. Quantum Technol. 7 2400030 [37] Wang D W, Zhao C, Yan Y T, Yang J, Wang Z and Zhou L 2024 Phys. Rev. A 109 053720 [38] Cheng W, Wang Z and Liu Y X 2022 Phys. Rev. A 106 033522 [39] Peng Y P and Jia W Z 2023 Phys. Rev. A 108 043709 [40] Jia W Z and Yu M T 2024 Opt. Express 32 9495 [41] Zhou J X, Zhu Z H, Zhang Y Q, Chen K K, Peng Z H, Chai Y F, Xiong Z Z and Tan L 2024 Laser Phys. Lett. 21 055202 [42] Zhang Y Q, Zhu Z H, Chen K K, Peng Z H, Yin W J, Yang Y, Zhao Y Q, Lu Z Y, Chai Y F, Xiong Z Z and others 2022 Front. Phys. 10 1054299 [43] Sun X J, Liu W X, Chen H and Li H R 2023 Commun. Theo. Phys. 75 035103 [44] Cai Y, Ma K J, Liu J, Guo G F, Tan L and Liu W M 2024 New J. Phys. 26 113003 [45] Chen Y T, Du L, Wang Z, Artoni M, La Rocca G C and Wu J H 2024 Phys. Rev. A 109 063710 [46] Yang D C, Cheng M T, Ma X S, Xu J, Zhu C and Huang X S 2018 Phys. Rev. A 98 063809 [47] Chen Y T, Du L, Guo L, Wang Z, Zhang Y, Li Y and Wu J H 2022 Commun. Phys. 5 215 [48] Zhang X, Li H, Zeng R, Hu M, Xu M, Zhou X, Lan Y, Xia X, Xu J and Yang Y 2024 Commun. Theo. Phys. 76 115501 [49] Chen K, Zhu Z, Zhang Y, Fu X, Peng Z, Lu Z, Chai Y, Xiong Z and Tan L 2024 Laser Phys. Lett. 21 095203 [50] Zhou J, Yin X L and Liao J Q 2023 Phys. Rev. A 107 063703 [51] Du L, Cai M R, Wu J H, Wang Z and Li Y 2021 Phys. Rev. A 103 053701 [52] Li H, Zhang X, Zeng R, Hu M, Xu M, Zhou X, Xia X, Xu J and Yang Y 2024 Opt. Express 32 38292 [53] Li S Y, Zhang Z Q, Du L, Li Y and Wu H 2024 Phys. Rev. A 109 063703 [54] Liu N, Wang X, Wang X, Ma X S and Cheng M T 2022 Opt. Express 30 23428 [55] Liu W, Lin Y, Li J and Wang X 2022 Front. Phys. 10 894115 [56] Cai G, Lu Y, Ma X S, Cheng M T and Huang X 2023 Opt. Express 31 33015 [57] Cai Q Y and Jia W Z 2021 Phys. Rev. A 104 033710 [58] Liu J, Cai Y, Ma K J, Tan L and Liu W M 2024 Phys. Scr. 99 105119 [59] Xu L and Guo L 2025 arXiv:2502.08156[hep-ph] |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|