Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074102    DOI: 10.1088/1674-1056/ad3ef7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Radiation of a TM mode from an open end of a three-layer dielectric capillary

Sergey N. Galyamin1,† and Alexandr M. Altmark2
1 St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia;
2 St. Petersburg Electrotechnical University "LETI", 5 Professora Popova, St. Petersburg 197022, Russia
Abstract  Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416 (2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener-Hopf-Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.
Keywords:  diffraction radiation      open-ended waveguide      Wiener-Hopf technique      Cherenkov radiation  
Received:  21 December 2023      Revised:  28 March 2024      Accepted manuscript online:  16 April 2024
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Fx (Diffraction and scattering)  
  41.60.-m (Radiation by moving charges)  
  41.60.Bq (Cherenkov radiation)  
Fund: This work was supported by the Russian Science Foundation (Grant No. 18-72-10137).
Corresponding Authors:  Sergey N. Galyamin     E-mail:  s.galyamin@spbu.ru

Cite this article: 

Sergey N. Galyamin and Alexandr M. Altmark Radiation of a TM mode from an open end of a three-layer dielectric capillary 2024 Chin. Phys. B 33 074102

[1] Nanni E A, Huang W R, Hong K H, Ravi K, Fallahi A, Möriena G, Dwayne Miller R J and Kartner F X 2015 Nat. Commun. 6 8486
[2] O’Shea D B, Andonian G, Barber S, Fitzmorris K, Hakimi S, Harrison J, D Hoang P, J Hogan M, Naranjo B, B Williams O, Yakimenko V and Rosenzweig J 2016 Nat. Commun. 7 12763
[3] Wang D, Su X, Yan L, Du Y, Tian Q, Liang Y, Niu L, Huang W, Gai W, Tang C and Antipov S 2017 Appl. Phys. Lett. 111 174102
[4] Jing C, Antipov S, Conde M, Gai W, Ha G, Liu W, Neveu N, Power J, Qiu J, Shi J, Wang D and Wisniewski E 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 898 72
[5] Hibberd M T, Healy A L, Lake D S, Georgiadis V, Smith E J H, Finlay O J, Pacey T H, Jones J K, Saveliev Y, Walsh D A, Snedden E W, Appleby R B, Burt G, Graham D M and Jamison S P 2020 Nat. Photon. 14 755
[6] Tang H, Zhao L, Zhu P, Zou X, Qi J, Cheng Y, Qiu J, Hu X, Song W, Xiang D and Zhang J 2021 Phys. Rev. Lett. 127 074801
[7] Galyamin S N, Tyukhtin A V, Antipov S and Baturin S S 2014 Opt. Express 22 8902
[8] Ivanyan M, Grigoryan A, Tsakanian A and Tsakanov V 2014 Phys. Rev. ST Accel. Beams 17 074701
[9] Wang D, Su X, Du Y, Tian Q, Liang Y, Niu L, Huang W, Gai W, Yan L, Tang C and Antipov S 2018 Rev. Sci. Instrum. 89 093301
[10] Zhao L, Tang H, Lu C, Jiang T, Zhu P, Hu L, Song W, Wang H, Qiu J, Jing C, Antipov S, Xiang D and Zhang J 2020 Phys. Rev. Lett. 124 054802
[11] Altmark A, Lesiv N and Mukhamedgaliev K 2019 J. Phys.: Conf. Ser. 1145 012039
[12] Antipov S, Spentzouris L, Gai W, Conde M, Franchini F, Konecny R, Liu W, Power J G, Yusof Z and Jing C 2008 J. Appl. Phys. 104 014901
[13] Jiang S, Li W, He Z, Jia Q and Wang L 2020 Opt. Lett. 45 5416
[14] Altmark A M, Kanareykin A D and Sheinman I L 2005 Tech. Phys. 50 87
[15] Jing C, Kanareykin A, Power J G, Conde M, Liu W, Antipov S, Schoessow P and Gai W 2011 Phys. Rev. Lett. 106 164802
[16] Bilyk V R and Grishunin K A 2019 Russian Technol. J. 7 71
[17] Galyamin S N, Vorobev V V and Tyukhtin A V 2021 IEEE Trans. Microw. Theory Tech. 69 2429
[18] Galyamin S N and Vorobev V V 2022 IEEE Trans. Microw. Theory Tech. 70 3087
[19] Galyamin S N, Tyukhtin A V, Vorobev V V, Grigoreva A A and Aryshev A S 2019 Phys. Rev. Accel. Beams 22 012801
[20] Weinstein L 1969 The Theory of Diffraction and the Factorization Method: Generalized Wiener-Hopf Technique Golem Series in Electromagnetics 3 (Golem Press)
[21] Mittra R and Lee S 1971 Analytical Techniques in the Theory of Guided Waves (Macmillian)
[22] Williams W E and Lighthill M J 1956 Mathematical Proceedings of the Cambridge Philosophical Society 52 322
[23] Voskresenskii G and Zhurav S 1978 Radiotekhnika i Electronika 23 2505
[24] Johnson T and Moffatt D 1980 Electromagnetic scattering by open circular waveguides Technical Report 710816-9 (The Ohio State University)
[25] Kobayashi K 1991 Antennas and Propagation Society Symposium 1991 Digest, London, ON, Canada, June 24-28, 1991, vol. 2 pp. 1054-1057
[26] Kobayashi K and Sawai A 1992 J. Electromagn. Waves Appl. 6 475
[27] Koshikawa S and Kobayashi K 1997 IEEE Trans. Antenn. Propagat. 45 949
[28] Gupta S, Bhattacharya A and Chakraborty A 1997 IEE Proceedings - Microwaves, Antennas and Propagation 144 126
[29] Kuryliak D, Koshikawa S, Kobayashi K and Nazarchuk Z 2000 Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413), September 12-15, 2000, Kharkov, Ukraine, vol. 2 p. 694
[30] Kuryliak D B, Kobayashi K, Koshikawa S and Nazarchuk Z T 2004 10th International Conference on Mathematical Methods in Electromagnetic Theory, September 14-17, 2004, Dniepropetrovsk, Ukraine, p. 251
[31] Hameş Y and Tayyar I H 2004 Prog. Electromagnet. Res. 44 143
[32] Hameş Y and Tayyar I H 2005 Electromagnetics 25 245
[33] Cicchetti R and Faraone A 2008 Prog. Electromagnet. Res. 78 285
[34] Galyamin S N, Tyukhtin A V and Vorobev V V 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 402 144
[35] Buyukaksoy A, Tayyar I H, Hacivelioglu F and Uzgoren G 2007 2007 International Conference on Electromagnetics in Advanced Applications, September 17-21, 2007, Turin, Italy, p. 649
[36] Buyukaksoy A, Hacivelioglu F and Uzgoren G 2008 12th International Conference on Mathematical Methods in Electromagnetic Theory, June 29, 2008-July 02, 2008, Odessa, Ukraine, p. 85
[37] Hacivelioglu F, Buyukaksoy A, Uzgoren G and Serbest H 2009 Mediterrannean Microwave Symposium (MMS), November 15-17, 2009, Tangiers, Morocco, p. 1
[38] Tayyar I H and Buyukaksoy A 2011 International Conference on Electromagnetics in Advanced Applications, September 12-16, 2011, Turin, Italy, p. 580
[39] Zaki K and Atia A 1983 IEEE Trans. Microw. Theory Tech. 31 1039
[40] Zaki K, Seng-Woon C and Chunming C 1988 IEEE Trans. Microw. Theory Tech. 36 1804
[41] Bolotovskii B M 1962 Sov. Phys. Usp. 4 781
[42] Antipov S, Baryshev S, Jing C, et al. 2015 Proceedings of the 6th International Particle Accelerator Conference (IPAC2015), May 3-8, 2015, Greater Richmond Convention Center in Richmond, VA, USA, p. 1029
[1] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[2] Polarization-dependent efficient Cherenkov radiation at visible wavelengths in hollow-core photonic crystal fiber cladding
Shen Xiang-Wei (申向伟), Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Rao Lan (饶岚), Xia Min (夏民), Han Ying (韩颖), Xia Chang-Ming (夏长明), Hou Lan-Tian (侯蓝田), Wu Zhong-Chao (吴中超), He Xiao-Liang (何晓亮). Chin. Phys. B, 2013, 22(1): 014102.
[3] Highly efficient Cherenkov radiation generation in the irregular point of hollow-core photonic crystal fiber
Shen Xiang-Wei (申向伟), Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Rao Lan (饶兰), Xia Min (夏民), Han Ying (韩颖), Xia Chang-Ming (夏长明), Hou Lan-Tian (侯蓝田 ). Chin. Phys. B, 2012, 21(11): 114102.
No Suggested Reading articles found!