Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094303    DOI: 10.1088/1674-1056/ade857
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental verification of circular motion of Mie particles trapped within focused acoustic vortex beams

Zhengbao Li(李正宝), Hongyu Li(李洪宇), and Qingdong Wang(王青东)†
College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  Techniques for manipulating nanodroplets lie at the core of numerous miniaturized systems in chemical and biological research endeavors. In this study, we introduce a versatile methodology for calculating the acoustic vortex field, integrating hybrid wave equation principles with ray acoustics. This approach demonstrates remarkable consistency between simulated results and experimental observations. Importantly, both theoretical analysis and experimental validation confirm that particles whose diameters match the wavelength (Mie particles) can be effectively trapped within a focused acoustic vortex field, rotating in circular trajectories centered at the vortex center. This research significantly expands the scope of acoustic vortex manipulation for larger particles and introduces a novel implementation strategy with potential applications in targeted drug delivery for clinical adjuvant therapy.
Keywords:  focused acoustic vortex      ray acoustic      topological charge      circular trajectories      Mie particles  
Received:  03 May 2025      Revised:  16 June 2025      Accepted manuscript online:  26 June 2025
PACS:  43.72.+q (Speech processing and communication systems)  
  43.38.Hz (Transducer arrays, acoustic interaction effects in arrays)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFE0201900).
Corresponding Authors:  Qingdong Wang     E-mail:  wangqingdong@sdust.edu.cn

Cite this article: 

Zhengbao Li(李正宝), Hongyu Li(李洪宇), and Qingdong Wang(王青东) Experimental verification of circular motion of Mie particles trapped within focused acoustic vortex beams 2025 Chin. Phys. B 34 094303

[1] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[2] Ashkin A 1997 Proc. Natl. Acad. Sci. USA 94 4853
[3] Lin S C, Mao X and Huang T J 2012 Lab Chip 12 2766
[4] Li Y, Lee C, Chen R, Zhou Q and Shung K K 2014 Appl. Phys. Lett. 105 173701
[5] Wu J R 1991 J. Acoust. Soc. Am. 89 2140
[6] Hertz H M J 1995 J. Appl. Phys. 78 4845
[7] Courtney C R P, Ong C K, Drinkwater B W, Wilcox P D, Demore C, Cochran S, Glynne-Jones P and Hill M 2010 J. Acoust. Soc. Am. 128 195
[8] Meng L, Cai F Y, Chen J J, Niu L L, Li Y M and Wu J R 2012 Appl. Phys. Lett. 100 173701
[9] Bernassau A L, Glynne-Jones P, Gesellchen F, Riehle M and Cumming D R S 2014 Ultrasonics 54 268
[10] Silva G T and Baggio A L 2015 Ultrasonics 56 449
[11] Wang Q D, Li Y Z, Ma Q Y, Guo G P, Tu J and Zhang D 2018 J. Appl. Phys. 123 034901
[12] Courtney C R P, Demore C E M, Wu H, Grinenko A, Wilcox P D, Cochran S and Drinkwater B W 2014 Appl. Phys. Lett. 104 154103
[13] Hong Z Y, Yin J F, Zhai W, Yan N and Drinkwater B W 2017 Sci. Rep. 7 7093
[14] Fan X D and Zhang L 2019 Phys. Rev. Appl. 11 014055
[15] Li Y Z, Li P X, Ding N, Guo G P, Ma Q Y, Tu J and Zhang D 2021 Chin. Phys. B 30 044302
[16] Baresch D, Thomas J L and Marchiano R 2013 J. Appl. Phys. 113 184901
[17] Baresch D, Thomas J L and Marchiano R 2013 J. Acoust. Soc. Am. 133 25
[18] Choe Y, Kim J W, Shung K K and Kim E S 2011 Appl. Phys. Lett. 99 233704
[19] Zhuang H F, Zhang Q Y, Hu G H, Wang Q D and Du L B 2024 Chin. Phys. B 33 074302
[20] Lee J 2009 Appl. Phys. Lett. 95 073701
[21] Liu J, Zhang C, Zong Y W, Guo H L and Li Z Y 2015 Photon. Res. 3 265
[22] Yoo J, Kim J, Lee J and Kim H H 2023 iScience 26 108178
[23] Lee J 2014 Ultrasonics 54 11
[24] Lee J, Ha K and Shung K K 2005 J. Acoust. Soc. Am. 117 3273
[1] Merging and separation of polarization singularities in complex lattices
Mengyao Wang(王梦瑶), Tian Shi(石天), Luhui Ning(宁鲁慧), Peng Liu(刘鹏), Liangsheng Li(李粮生), and Ning Zheng(郑宁). Chin. Phys. B, 2025, 34(3): 037303.
[2] Large-scale particle trapping by acoustic vortices with a continuously variable topological charge
Haofei Zhuang(庄昊霏), Qingyuan Zhang(张清源), Gehao Hu(胡格昊), Qingdong Wang(王青东), and Libin Du(杜立彬). Chin. Phys. B, 2024, 33(7): 074302.
[3] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[4] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[5] Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates
Huaping Zang(臧华平), Baozhen Wang(王宝珍), Chenglong Zheng(郑程龙), Lai Wei(魏来), Quanping Fan(范全平), Shaoyi Wang(王少义), Zuhua Yang(杨祖华), Weimin Zhou(周维民), Leifeng Cao(曹磊峰), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(1): 014209.
[6] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[7] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[8] Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进). Chin. Phys. B, 2021, 30(10): 104203.
[9] Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction
Chao-Fan Gong(龚超凡), Jing-Jing Li(李晶晶), Kai Guo(郭凯), Hong-Ping Zhou(周红平)†, and Zhong-Yi Guo(郭忠义)‡. Chin. Phys. B, 2020, 29(10): 104301.
[10] Propagation dynamics of off-axis noncanonical vortices in a collimated Gaussian beam
Cheng Yin(殷澄), Xuefen Kan(阚雪芬), Hailang Dai(戴海浪), Minglei Shan(单鸣雷), Qingbang Han(韩庆邦), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(3): 034205.
[11] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[12] Multiple off-axis acoustic vortices generated by dual coaxial vortex beams
Wen Li(李雯), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平). Chin. Phys. B, 2018, 27(2): 024301.
[13] Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit
Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉). Chin. Phys. B, 2017, 26(9): 094202.
[14] Composite optical vortices in noncollinear Laguerre--Gaussian beams and their propagation in free space
Cheng Ke(程科), Liu Pu-Sheng(刘普生), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2008, 17(5): 1743-1751.
[15] Topological susceptibility from overlap fermion
Ying He-Ping (应和平), Zhang Jian-Bo (张剑波). Chin. Phys. B, 2003, 12(12): 1374-1377.
No Suggested Reading articles found!