Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094401    DOI: 10.1088/1674-1056/addce5
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Normal energy and stretch diffusion in a one-dimensional momentum conserving lattice with nonlinear bounded kinetic energy

Hongbin Chen(陈宏斌)1, Qin-Yi Zhang(张钦奕)1, Jiahui Wang(王佳惠)1, Nianbei Li(李念北)1,†, and Jie Chen(陈杰)2,‡
1 Institute of Systems Science and Department of Physics, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China;
2 Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory for Nanophononics, MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  One-dimensional (1D) nonlinear lattices that conserve momentum exhibit anomalous heat conduction, except for the specific case of the 1D coupled rotator lattice. Unlike classical interacting 1D nonlinear lattices such as the Fermi-Pasta-Ulam $\beta$ (FPU-$\beta$) lattice, the 1D coupled rotator lattice has a bounded interaction potential energy. Recently, the 1D coupled rotator lattice with additional bounded kinetic energy has also been found to exhibit normal heat conduction. Here, we study energy diffusion in the 1D momentum-conserving lattice with bounded kinetic energy only. We find that this lattice exhibits normal energy diffusion as well as normal stretch diffusion. This work indicates that bounded energy, whether kinetic or potential, is crucial for normal energy diffusion and heat conduction in 1D momentum-conserving nonlinear lattices.
Keywords:  heat conduction      nonlinear dynamics  
Received:  07 April 2025      Revised:  16 May 2025      Accepted manuscript online:  27 May 2025
PACS:  44.10.+i (Heat conduction)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175074 and 12475037) and the Science and Technology Commission of Shanghai Municipality (Grant No. 24520711200). J. C. is supported by the Shuguang Program of Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (Grant No. 23SG18).
Corresponding Authors:  Nianbei Li, Jie Chen     E-mail:  nbli@hqu.edu.cn;jie@tongji.edu.cn

Cite this article: 

Hongbin Chen(陈宏斌), Qin-Yi Zhang(张钦奕), Jiahui Wang(王佳惠), Nianbei Li(李念北), and Jie Chen(陈杰) Normal energy and stretch diffusion in a one-dimensional momentum conserving lattice with nonlinear bounded kinetic energy 2025 Chin. Phys. B 34 094401

[1] Lepri S, Livi R and Politi A 1997 Phys. Rev. Lett. 78 1896
[2] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[3] Dhar A 2008 Adv. Phys. 57 457
[4] Liu S, Xu X F, Xie R G, Zhang G and Li B W 2013 Eur. Phys. J. B 85 337
[5] Lepri S 2016 Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer Vol. 921 (Heidelberg: Springer)
[6] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B and Zhang G 2020 Phys. Rep. 860 1
[7] Hatano T 1999 Phys. Rev. E 59 R1
[8] Prosen T and Campbell D K 2000 Phys. Rev. Lett. 84 2857
[9] Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601
[10] Pereverzev A 2003 Phys. Rev. E 68 056124
[11] Wang J S and Li B W 2004 Phys. Rev. Lett. 92 074302
[12] Wang L and Wang T 2011 Europhys. Lett. 93 54002
[13] Wang L, Hu B and Li B W 2012 Phys. Rev. E 86 040101
[14] Li N B, Li B W and Flach S 2010 Phys. Rev. Lett. 105 054102
[15] Hu B, Li B W and Zhao H 1998 Phys. Rev. E 57 2992
[16] Hu B, Li B W and Zhao H 2000 Phys. Rev. E 61 3882
[17] Aoki K and Kusnezov D 2000 Phys. Lett. A 265 250
[18] Giardinà C, Livi R, Politi A and Vassalli M 2000 Phys. Rev. Lett. 84 2144
[19] Gendelman O and Savin A 2000 Phys. Rev. Lett. 84 2381
[20] Li Y Y, Liu S, Li N B, Hänggi P and Li B W 2015 New J. Phys. 17 043064
[21] Baldovin M and Iubini S 2021 J. Stat. Mech. 053202
[22] Chen H B and Li N B 2025 Eur. Phys. J. B 98 21
[23] Zhong Y, Zhang Y, Wang J and Zhao H 2012 Phys. Rev. E 85 060102(R)
[24] Savin A V and Kosevich Y A 2014 Phys. Rev. E 89 032102
[25] Chen S, Zhang Y, Wang J and Zhao H 2016 J. Stat. Mech. 033205
[26] Wang L, Hu B and Li B W 2013 Phys. Rev. E 88 052112
[27] Das S G, Dhar A and Narayan O 2014 J. Stat. Phys. 154 204
[28] Zhao H 2006 Phys. Rev. Lett. 96 140602
[29] Liu S, Hänggi P, Li N B, Ren J and Li B W 2014 Phys. Rev. Lett. 112 040601
[30] Chen S, Zhang Y, Wang J. and Zhao H 2013 Phys. Rev. E 87 032153
[31] Chen S, Zhang Y, Wang J and Zhao H 2014 Phys. Rev. E 89 022111
[32] Wang L, Wu Z Y and Xu L 2015 Phys. Rev. E 91 062130
[33] Xu L and Wang L 2017 Phys. Rev. E 96 052139
[34] Li N B 2020 J. Phys. D: Appl. Phys. 53 145302
[35] Li N B 2019 Phys. Rev. E 100 062104
[36] Li Y Y, Li N B and Li B W 2015 Eur. Phys. J. B 88 182
[1] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
[2] Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting
Jia-Heng Xie(谢佳衡), Tao Yang(杨涛), and Jie Tang(唐介). Chin. Phys. B, 2024, 33(5): 050706.
[3] Dynamic response of a thermal transistor to time-varying signals
Qinli Ruan(阮琴丽), Wenjun Liu(刘文君), and Lei Wang(王雷). Chin. Phys. B, 2024, 33(5): 056301.
[4] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[5] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[6] Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
Kezhao Xiong(熊科诏), Zonghua Liu(刘宗华). Chin. Phys. B, 2017, 26(9): 098904.
[7] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[8] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[9] Numerical solution of the imprecisely defined inverse heat conduction problem
Smita Tapaswini, S. Chakraverty, Diptiranjan Behera. Chin. Phys. B, 2015, 24(5): 050203.
[10] Time fractional dual-phase-lag heat conduction equation
Xu Huan-Ying (续焕英), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2015, 24(3): 034401.
[11] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[12] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[13] Effects of material properties on the competition mechanism of heat transfer of a granular bed in rotary cylinders
Xie Zhi-Yin (谢知音), Feng Jun-Xiao (冯俊小). Chin. Phys. B, 2013, 22(8): 084501.
[14] The propagation of shape changing soliton in a nonuniform nonlocal media
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi. Chin. Phys. B, 2013, 22(8): 084209.
[15] An improved local radial point interpolation method for transient heat conduction analysis
Wang Feng (王峰), Lin Gao (林皋), Zheng Bao-Jing (郑保敬), Hu Zhi-Qiang (胡志强). Chin. Phys. B, 2013, 22(6): 060206.
No Suggested Reading articles found!