ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Large-scale particle trapping by acoustic vortices with a continuously variable topological charge |
Haofei Zhuang(庄昊霏)3, Qingyuan Zhang(张清源)2, Gehao Hu(胡格昊)3, Qingdong Wang(王青东)1,†, and Libin Du(杜立彬)1 |
1 College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; 2 Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; 3 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
|
|
Abstract Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices (AVs) which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge (CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.
|
Received: 29 April 2024
Revised: 14 June 2024
Accepted manuscript online: 24 June 2024
|
PACS:
|
43.72.+q
|
(Speech processing and communication systems)
|
|
43.38.Hz
|
(Transducer arrays, acoustic interaction effects in arrays)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFE0201900). |
Corresponding Authors:
Qingdong Wang
E-mail: wangqingdong@sdust.edu.cn
|
Cite this article:
Haofei Zhuang(庄昊霏), Qingyuan Zhang(张清源), Gehao Hu(胡格昊), Qingdong Wang(王青东), and Libin Du(杜立彬) Large-scale particle trapping by acoustic vortices with a continuously variable topological charge 2024 Chin. Phys. B 33 074302
|
[1] Haake A and Dual J 2002 Ultrasonics 40 317 [2] Foresti D, Sambatakakis G, Bottan S and Poulikakos D 2013 Sci. Rep. 3 3176 [3] Marzo A, Seah S, Drinkwater B, Sahoo D, Long B and Subramanian S. 2015 Nat. Commun. 6 8661 [4] Drinkwater W, Seah A, Malkin R, Subramanian S and Carter T 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1233 [5] Xie W and Wei B 2001 Appl. Phys. Lett. 79 881 [6] Hong Z, Xie W and Wei B 2011 Rev. Sci. Instrum. 82 074904 [7] Xie W, Cao C, Lü Y, Hong Z and Wei B 2006 Appl. Phys. Lett. 89 214102 [8] Kozuka T, Yasui K, Tuziuti T, Towata A and Iida Y 2006 J. Acoust. Soc. Am. 120 3370 [9] Marston P 2009 J. Acoust. Soc. Am. 125 3539 [10] Cain C and Umemura S 1986 IEEE Trans. Microwave Theory Tech. 34 542 [11] Bernassau A, Courtney C, Beeley J, Drinkwater B and Cumming D 2013 Appl. Phys. Lett. 102 16410 [12] Nye J and Berry M 1974 Proc. R. Soc. London 336 165 [13] Thomas J and Marchiano R 2003 Phys. Rev. Lett. 91 244302 [14] Hong Z, Zhang J and Drinkwater B 2015 Phys. Rev. Lett. 114 214301 [15] Volke-Sep′ulveda K, Santillán A and Boullosa R 2008 Phys. Rev. Lett. 100 024302 [16] Dashti P, Alhassen F and Lee H 2006 Phys. Rev. Lett. 96 043604 [17] Zhang L and Marston P 2011 Phys. Rev. E 84 035601(R) [18] Anhaüser A, Wunenburger R and Brasselet E 2012 Phys. Rev. Lett. 109 034301 [19] Leao-Neto J and Silva G 2016 Ultrasonics 71 1 [20] Mitri F, Lobo T and Silva G 2012 Phys. Rev. E 85 026602 [21] Meng L, Cui X, Dong C, Liu X, Wei Zhou, Zhang W, Wang X, Niu L, Li F, Cai F, Wu J and Zheng H 2020 Appl. Phys. Lett. 116 073701 [22] Mitri F 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 2089 [23] Zheng H, Gao, Ma Q, Dai Y and Zhang D 2014 J. Appl. Phys. 115 084909 [24] Yang L, Ma Q, Tu J and Zhang D 2013 J. Appl. Phys. 113 154904 [25] Gao L, Zheng H, Ma Q, Tu J and Zhang D 2014 J. Appl. Phys. 116 024905 [26] Baresch D, Thomas J and Marchiano R 2013 J. Appl. Phys. 113 184901 [27] Marchiano R and Thomas J 2005 Phys. Rev. E 71 066616 [28] Li Y, Guo G, Ma Q, Tu J and Zhang D 2017 J. Appl. Phys. 121 164901 [29] Du L, Hu G, Hu Y and Wang Q 2023 Sensors 23 6874 [30] Wang Q, Li Y, Ma Q, Guo G, Tu J and Zhang D 2018 J. Appl. Phys. 123 034901 [31] Pazos-Ospina J, Quiceno F, Ealo J, Muelas H and Camacho J 2015 Phys Procedia 70 183 [32] Jiménez N, Sánchez-Morcillo, PicóR, Garcia-Raffi L, Romero-Garcia V and Staliunas K 2015 Phys. Procedia 70 245 [33] Jiang X, Zhao Ji, Liu S, Liang B, Zou X, Yang J, Qiu C and Cheng J 2016 Appl. Phys. Lett. 108 203501 [34] Jiang X, Li Y, Liang B, Cheng J and Zhang L 2016 Phys. Rev. Lett. 117 034301 [35] Cai F, He Z, Liu Z, Meng L, Cheng X and Zheng H 2011 Appl. Phys. Lett. 99 253505 [36] Wang T, Ke M, Li W, Yang Q, Qiu C and Liu Z 2016 Appl. Phys. Lett. 109 123506 [37] Courtney C, Drinkwater B, Demore C, Cochran S, Grinenko A and Wilcox P 2013 Appl. Phys. Lett. 102 123508 [38] Courtney C, Demore C, Wu H, Grinenko A, Wilcox P, Cochran S and Drinkwater B 2014 Appl. Phys. Lett. 104 154103 [39] Hong Z, Zhang J and Drinkwater B 2015 Europhys. Lett. 110 14002 [40] Glynne-Jones P, Démoré C, Ye C, Qiu Y, Cochran S and Hill M 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 1258 [41] Baresch D, Thomas J and Marchiano R 2016 Phys. Rev. Lett. 116 024301 [42] Baresch D, Thomas J and Marchiano R 2013 J. Appl. Phys. 113 184901 [43] Bruus H 2012 Lab Chip 12 1014 [44] Wooh S and Shi Y 1998 Ultrasonics 36 737 [45] Wang Q, Hu Y, Wang S and Li H 2023 Chin. Phys. B 32 064304 [46] Zhou C, Wang Q, Pu S, Li Y, Guo G, Chu H, Ma Q, Tu J and Zhang D 2020 J. Appl. Phys. 128 084901 [47] Fan X and Zhang Li 2019 Phys. Rev. Appl. 11 014055 [48] Fan X, Zhu Y, Su Z, Li N, Huang X, Kang Y, Li C, Weng C, Zhang H, Kan W and Assouar B 2023 Phys. Rev. Appl. 19 034032 [49] Fan X and Zhang L 2023 J. Acoust. Soc. Am. 154 3354 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|