| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Energy focusing of flexural waves via algorithmically optimized coding metasurface lenses |
| Zi-Rui Wang(王子睿)†, Di-Chao Chen(陈帝超)†,‡, Rui Hong(洪瑞), and Da-Jian Wu(吴大建)§ |
| Institute of Acoustics, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China |
|
|
|
|
Abstract Efficient elastic wave focusing is crucial in materials and physical engineering. Elastic coding metasurfaces, which are innovative planar artificial structures, show great potential for use in the field of wave focusing. However, elastic coding lenses (ECLs) still suffer from low focusing performance, thickness comparable to wavelength, and frequency sensitivity. Here, we consider both the structural and material properties of the coding unit, thus realizing further compression of the thickness of the ECL. We chose the simplest ECL, which consists of only two encoding units. The coding unit 0 is a straight structure constructed using a carbon fiber reinforced composite material, and the coding unit 1 is a zigzag structure constructed using an aluminum material, and the thickness of the ECL constructed using them is only 1/8 of the wavelength. Based on the theoretical design, the arrangement of coding units is further optimized using genetic algorithms, which significantly improves the focusing performance of the lens at different focus and frequencies. This study provides a more effective way to control vibration and noise in advanced structures.
|
Received: 13 March 2025
Revised: 15 April 2025
Accepted manuscript online: 29 April 2025
|
|
PACS:
|
43.40.+s
|
(Structural acoustics and vibration)
|
| |
46.15.Cc
|
(Variational and optimizational methods)
|
| |
46.40.-f
|
(Vibrations and mechanical waves)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12404531) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 23KJB140011). |
Corresponding Authors:
Di-Chao Chen, Da-Jian Wu
E-mail: chendichao@njnu.edu.cn;wudajian@njnu.edu.cn
|
Cite this article:
Zi-Rui Wang(王子睿), Di-Chao Chen(陈帝超), Rui Hong(洪瑞), and Da-Jian Wu(吴大建) Energy focusing of flexural waves via algorithmically optimized coding metasurface lenses 2025 Chin. Phys. B 34 094302
|
[1] Zhu H, Patnaik S, Walsh T F, Jared B H and Semperlotti F 2020 Proc. Natl. Acad. Sci. USA 117 26099 [2] Li P, Qian Z, Zhang Y, Ma T, Kuznetsova I E, Qian Z and Kolesov V 2023 Energy 267 126523 [3] Wang G, Wen X, Wen J, Shao L and Liu Y 2004 Phys. Rev. Lett. 93 154302 [4] Danawe H and Tol S 2022 J. Sound Vib. 518 116552 [5] Liu Y, Liang Z, Liu F, Diba O, Lamb A and Li J 2017 Phys. Rev. Lett. 119 034301 [6] Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T and Sheng P 2000 Science 289 5485 [7] Huang H H, Sun C T and Huang G L 2009 Int. J. Eng. Sci. 47 S69 [8] Fang N, D, Xu J, Ambati M, SrituravanichW, Sun C and Zhang X 2006 Nat. Mater. 5 6 [9] Liu Y, He Z, Yang Y, Li X, Li Z and Ma H 2022 Biosens. Bioelectron. 211 114392 [10] Zhang S, C and Fang N 2011 Phys. Rev. Lett. 106 024301 [11] Yang T, Bai X, Gao D, Wu L, Li B, Thong J T and Qiu C W 2015 Adv. Mater. 27 7752 [12] Chen H, Wu B I, Zhang B and Kong J A 2007 Phys. Rev. Lett. 99 063903 [13] Wang X, Luo X, Zhao H and Huang Z 2018 Appl. Phys. Lett. 112 021901 [14] Long H, Zhu Y, Gu Y, Cheng Y and Liu X 2022 Phys. Rev. Appl. 18 044032 [15] Ma G and Sheng P 2016 Sci. Adv. 2 e1501595 [16] Oudich M, Li Y, Assouar BM and Hou Z 2010 New J. Phys. 12 083049 [17] Hussein M I, Patrick I, Banerjee A and Adhikari S 2022 J. Sound Vib. 531 116977 [18] Banerjee A, Adhikari S and Hussein M I 2021 Int. J. Mech. Sci. 207 106630 [19] Zhu H,Walsh T F and Semperlotti F 2018 Appl. Phys. Lett. 113 221903 [20] Li J, Zhou Y and Chen H 2023 Chin. Phys. B 32 064201 [21] Li P, Qian Z, Dong B, Qian Z, Ma T and Kuznetsova I 2023 Int. J. Mech. Sci. 248 108206 [22] Liu Y Q, Sun J, Shu Y, Wu L, Lu L, Qi K, Che Y, Li L and Yin H 2021 Opt. Lasers Eng. 147 106734 [23] Hu Y, Li M, Liu H and Li B 2023 Eng. Struct. 262 114392 [24] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science 339 6125 [25] Ma G, Yang M, S, Yang Z and Sheng P 2014 Nat. Mater. 13 9 [26] Zhang J, Su X, Liu Y, Zhao Y, Y and Hu N 2019 Int. J. Solid Struct. 162 14 [27] Lin Z, XuW, Xuan C, Qi W and Wang W 2021 J. Phys. D: Appl. Phys. 54 255303 [28] Yang T, Lin Z, Zhu X and Yang T 2022 Phys. Rev. Appl. 18 064065 [29] Zhu H and Semperlotti F 2016 Phys. Rev. Lett. 117 034302 [30] Chen D C, Zhu X F, Wei Q, Yao J and Wu D J 2020 J. Phys. D: Appl. Phys. 53 255501 [31] Zhang N L, Zhao S D, Dong H W, Wang Y S and Zhang C 2022 Appl. Phys. Lett. 120 142201 [32] W Li W, Meng F and Huang X. 2020 Appl. Phys. Lett. 117 021901 [33] Liu F Y, Zhang N L, Dong H W, Wang F J and Zhao S D 2023 Appl. Phys. Lett. 123 011706 [34] He Z, Yuan K, Xiong G and Wang J 2023 Chin. Phys. Lett. 40 104402 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|