Merging and separation of polarization singularities in complex lattices
Mengyao Wang(王梦瑶)1,2, Tian Shi(石天)3, Luhui Ning(宁鲁慧)4,5, Peng Liu(刘鹏)1,†, Liangsheng Li(李粮生)2,‡, and Ning Zheng(郑宁)1,§
1 School of Physics, Beijing Institute of Technology, Beijing 100081, China; 2 National Key Laboratory of Scattering and Radiation, Beijing 100854, China; 3 Army Engineering University of PLA Shijiazhuang Campus, Shijiazhuang 050003, China; 4 Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum-Beijing, Beijing 102249, China; 5 Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
Abstract The evolution in momentum space of bound states in the continuum (BICs) and circularly polarized states (CPSs) - as far-field polarization singularities - can be observed by controlling the geometric parameters of photonic crystals. This offers significant potential in optics and photonics. Here, we reveal that in complex lattices far-field polarization singularities can be flexibly manipulated while preserving structural symmetry. A change in topological charge for the at- BIC can generate new BICs or CPSs. At an off- point, a BIC can spawn from the collision of two CPSs. As the thickness of the structure increases, this BIC will meet the at- BIC. The merging of BICs can induce topological charge transition and yield a large wavevector space around the point with ultra-high quality () factors. Our findings provide a novel degree of freedom for manipulating polarization singularities, which holds great promise in radiation modulation and singular optics.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12374205).
Corresponding Authors:
Peng Liu, Liangsheng Li, Ning Zheng
E-mail: liupeng@bit.edu.cn;liliangshengbititp@163.com;ningzheng@bit.edu.cn
Cite this article:
Mengyao Wang(王梦瑶), Tian Shi(石天), Luhui Ning(宁鲁慧), Peng Liu(刘鹏), Liangsheng Li(李粮生), and Ning Zheng(郑宁) Merging and separation of polarization singularities in complex lattices 2025 Chin. Phys. B 34 037303
[1] Doeleman H M, Monticone F, Hollander W D, Alù A and Koenderink A F 2018 Nat. Photonics 13 397 [2] Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, Liu X, Shi L and Zi J 2019 Phys. Rev. Lett. 123 116104 [3] Chen Y, Deng H, Sha X, Chen W, Wang R, Chen Y H, Wu D, Chu J, Kivshar Y S, Xiao S and Qiu C 2023 Nature 613 474 [4] Chen A, Liu W, Zhang Y, Wang B, Liu X, Shi L, Lu L and Zi J 2019 Phys. Rev. B 99 180101 [5] von Neumann J and Wigner E P 2014 The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers (Berlin: Springer) pp. 291-293 [6] Marinica D C, Borisov A G and Shabanov S V 2016 Phys. Rev. Lett. 100 183902 [7] Wang W, Srivastava Y K, Tan T C, Wang Z and Singh R 2023 Nat. Commun. 14 2811 [8] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater. 1 1 [9] Liang Y, Koshelev K, Zhang F, Lin H, Lin S, Wu J, Jia B and Kivshar Y 2020 Nano Lett. 20 6351 [10] Zhen B, Hsu C W, Lu L, Stone A D and Soljačić M 2014 Phys. Rev. Lett. 113 257401 [11] Campione S, Liu S, Basilio L I, Warne L K, Langston W L, Luk T S, Wendt J R, Reno J L, Keeler G A, Brener I and Sinclair M B 2016 ACS Photonics 3 2362 [12] Koshelev K, Lepeshov S, Liu M, Bogdanov A and Kivshar Y 2018 Phys. Rev. Lett. 121 193903 [13] Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P and Chen Y F 2018 Phys. Rev. B 98 214101 [14] Song Q, Hu J, Dai S, Zheng C, Han D, Zi J, Zhang Z Q and Chan C T 2020 Sci. Adv. 6 eabc1160 [15] Zhong H, Yu Y, Zheng Z, Ding Z, Zhao X, Yang J, Wei Y, Chen Y and Yu S 2023 Light Sci. Appl. 12 100 [16] Sun Y, Hu Z, Shi K, Guo T, Xing Y, Jin Y and He S 2023 Adv. Opt. Mater. 11 2300197 [17] Conteduca D, Barth I, Pitruzzello G, Reardon C P, Martins E R and Krauss T F 2021 Nat. Commun. 12 3293 [18] Romano S, Lamberti A, Masullo M, Penzo E, Cabrini S, Rendina I and Mocella V 2018 Materials 11 526 [19] Wang J, Kühne J, Karamanos T, Rockstuhl C, Maier S A and Tittl A 2021 Adv. Funct. Mater. 31 2104652 [20] Wang B, Liu W, Zhao M, Wang J, Zhang Y, Chen A, Guan F, Liu X, Shi L and Zi J 2020 Nat. Photonics 14 623 [21] Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D and Soljačić M 2013 Nature 499 188 [22] Jiang Q, Hu P, Wang J, Han D and Zi J 2023 Phys. Rev. Lett. 131 013801 [23] Jin J, Yin X, Ni L, Soljačić M, Zhen B and Peng C 2019 Nature 574 501 [24] Kang M, Zhang S, Xiao M and Xu H 2021 Phys. Rev. Lett. 126 117402 [25] Kang M, Mao L, Zhang S, Xiao M, Xu H and Chan C T 2022 Light Sci. Appl. 11 228 [26] Bai H, Shevchenko A and Kolkowski R 2024 arXiv:2401.16105[hepph] [27] Qi X,Wu J,Wu F, Ren M,Wei Q,Wang Y, Jiang H, Li Y, Guo Z, Yang Y, Zheng W, Sun Y and Chen H 2023 Photonics Res. 11 1262 [28] Lee S G, Kim S H and LeeWJ 2023 Laser Photonics Rev. 17 2300550 [29] Wang B, Liu J, Cui J, Liu J, Tian F, Sun W and Li L 2023 Front. Phys. 11 121 [30] Yoda T and Notomi M 2020 Phys. Rev. Lett. 125 053902 [31] Ovcharenko A I, Blanchard Cé, Hugonin J P and Sauvan C 2020 Phys. Rev. B 101 155303 [32] Zeng Y, Hu G, Liu K, Tang Z and Qiu C W 2021 Phys. Rev. Lett. 127 176101 [33] Luo H, Liu L, Xi Z, Lu Y and Wang P 2023 Phys. Rev. A 107 013504 [34] Wang M, Ji C Y, Li L and Zheng N 2024 Opt. Lett. 49 1401
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.