Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 037303    DOI: 10.1088/1674-1056/ada9da
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Merging and separation of polarization singularities in complex lattices

Mengyao Wang(王梦瑶)1,2, Tian Shi(石天)3, Luhui Ning(宁鲁慧)4,5, Peng Liu(刘鹏)1,†, Liangsheng Li(李粮生)2,‡, and Ning Zheng(郑宁)1,§
1 School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 National Key Laboratory of Scattering and Radiation, Beijing 100854, China;
3 Army Engineering University of PLA Shijiazhuang Campus, Shijiazhuang 050003, China;
4 Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum-Beijing, Beijing 102249, China;
5 Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
Abstract  The evolution in momentum space of bound states in the continuum (BICs) and circularly polarized states (CPSs) - as far-field polarization singularities - can be observed by controlling the geometric parameters of photonic crystals. This offers significant potential in optics and photonics. Here, we reveal that in complex lattices far-field polarization singularities can be flexibly manipulated while preserving structural symmetry. A change in topological charge for the at-Γ BIC can generate new BICs or CPSs. At an off-Γ point, a BIC can spawn from the collision of two CPSs. As the thickness of the structure increases, this BIC will meet the at-Γ BIC. The merging of BICs can induce topological charge transition and yield a large wavevector space around the Γ point with ultra-high quality (Q) factors. Our findings provide a novel degree of freedom for manipulating polarization singularities, which holds great promise in radiation modulation and singular optics.
Keywords:  bound states in the continuum      circularly polarized states      topological charge      far-field polarization      photonic crystals  
Received:  01 November 2024      Revised:  23 December 2024      Accepted manuscript online:  14 January 2025
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12374205).
Corresponding Authors:  Peng Liu, Liangsheng Li, Ning Zheng     E-mail:  liupeng@bit.edu.cn;liliangshengbititp@163.com;ningzheng@bit.edu.cn

Cite this article: 

Mengyao Wang(王梦瑶), Tian Shi(石天), Luhui Ning(宁鲁慧), Peng Liu(刘鹏), Liangsheng Li(李粮生), and Ning Zheng(郑宁) Merging and separation of polarization singularities in complex lattices 2025 Chin. Phys. B 34 037303

[1] Doeleman H M, Monticone F, Hollander W D, Alù A and Koenderink A F 2018 Nat. Photonics 13 397
[2] Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, Liu X, Shi L and Zi J 2019 Phys. Rev. Lett. 123 116104
[3] Chen Y, Deng H, Sha X, Chen W, Wang R, Chen Y H, Wu D, Chu J, Kivshar Y S, Xiao S and Qiu C 2023 Nature 613 474
[4] Chen A, Liu W, Zhang Y, Wang B, Liu X, Shi L, Lu L and Zi J 2019 Phys. Rev. B 99 180101
[5] von Neumann J and Wigner E P 2014 The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers (Berlin: Springer) pp. 291-293
[6] Marinica D C, Borisov A G and Shabanov S V 2016 Phys. Rev. Lett. 100 183902
[7] Wang W, Srivastava Y K, Tan T C, Wang Z and Singh R 2023 Nat. Commun. 14 2811
[8] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater. 1 1
[9] Liang Y, Koshelev K, Zhang F, Lin H, Lin S, Wu J, Jia B and Kivshar Y 2020 Nano Lett. 20 6351
[10] Zhen B, Hsu C W, Lu L, Stone A D and Soljačić M 2014 Phys. Rev. Lett. 113 257401
[11] Campione S, Liu S, Basilio L I, Warne L K, Langston W L, Luk T S, Wendt J R, Reno J L, Keeler G A, Brener I and Sinclair M B 2016 ACS Photonics 3 2362
[12] Koshelev K, Lepeshov S, Liu M, Bogdanov A and Kivshar Y 2018 Phys. Rev. Lett. 121 193903
[13] Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P and Chen Y F 2018 Phys. Rev. B 98 214101
[14] Song Q, Hu J, Dai S, Zheng C, Han D, Zi J, Zhang Z Q and Chan C T 2020 Sci. Adv. 6 eabc1160
[15] Zhong H, Yu Y, Zheng Z, Ding Z, Zhao X, Yang J, Wei Y, Chen Y and Yu S 2023 Light Sci. Appl. 12 100
[16] Sun Y, Hu Z, Shi K, Guo T, Xing Y, Jin Y and He S 2023 Adv. Opt. Mater. 11 2300197
[17] Conteduca D, Barth I, Pitruzzello G, Reardon C P, Martins E R and Krauss T F 2021 Nat. Commun. 12 3293
[18] Romano S, Lamberti A, Masullo M, Penzo E, Cabrini S, Rendina I and Mocella V 2018 Materials 11 526
[19] Wang J, Kühne J, Karamanos T, Rockstuhl C, Maier S A and Tittl A 2021 Adv. Funct. Mater. 31 2104652
[20] Wang B, Liu W, Zhao M, Wang J, Zhang Y, Chen A, Guan F, Liu X, Shi L and Zi J 2020 Nat. Photonics 14 623
[21] Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D and Soljačić M 2013 Nature 499 188
[22] Jiang Q, Hu P, Wang J, Han D and Zi J 2023 Phys. Rev. Lett. 131 013801
[23] Jin J, Yin X, Ni L, Soljačić M, Zhen B and Peng C 2019 Nature 574 501
[24] Kang M, Zhang S, Xiao M and Xu H 2021 Phys. Rev. Lett. 126 117402
[25] Kang M, Mao L, Zhang S, Xiao M, Xu H and Chan C T 2022 Light Sci. Appl. 11 228
[26] Bai H, Shevchenko A and Kolkowski R 2024 arXiv:2401.16105[hepph]
[27] Qi X,Wu J,Wu F, Ren M,Wei Q,Wang Y, Jiang H, Li Y, Guo Z, Yang Y, Zheng W, Sun Y and Chen H 2023 Photonics Res. 11 1262
[28] Lee S G, Kim S H and LeeWJ 2023 Laser Photonics Rev. 17 2300550
[29] Wang B, Liu J, Cui J, Liu J, Tian F, Sun W and Li L 2023 Front. Phys. 11 121
[30] Yoda T and Notomi M 2020 Phys. Rev. Lett. 125 053902
[31] Ovcharenko A I, Blanchard Cé, Hugonin J P and Sauvan C 2020 Phys. Rev. B 101 155303
[32] Zeng Y, Hu G, Liu K, Tang Z and Qiu C W 2021 Phys. Rev. Lett. 127 176101
[33] Luo H, Liu L, Xi Z, Lu Y and Wang P 2023 Phys. Rev. A 107 013504
[34] Wang M, Ji C Y, Li L and Zheng N 2024 Opt. Lett. 49 1401
[1] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[2] Symmetry-protected and Brillouin zone folding driven bound states in the continuum in dielectric nanorod arrays for efficient third harmonic generation
Wen-Jing Wang(王文静), Shi-Jie Liang(梁世杰), Jia-Qi Zou(邹家祺), Yan-Yan Huo(霍燕燕), and Ting-Yin Ning(宁廷银). Chin. Phys. B, 2025, 34(3): 034202.
[3] Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system
Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Chin. Phys. B, 2024, 33(8): 084206.
[4] Large-scale particle trapping by acoustic vortices with a continuously variable topological charge
Haofei Zhuang(庄昊霏), Qingyuan Zhang(张清源), Gehao Hu(胡格昊), Qingdong Wang(王青东), and Libin Du(杜立彬). Chin. Phys. B, 2024, 33(7): 074302.
[5] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[6] Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum
Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华). Chin. Phys. B, 2024, 33(12): 128103.
[7] Topological slow light and rainbow trapping of surface wave in valley photonic crystal bounded by air
Shuheng Chen(陈书恒), Yi Qi(齐奕), Yucen Li(李昱岑), Qihao Wang(王琪皓), and Yuanjiang Xiang(项元江). Chin. Phys. B, 2024, 33(11): 118701.
[8] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[9] Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates
Huaping Zang(臧华平), Baozhen Wang(王宝珍), Chenglong Zheng(郑程龙), Lai Wei(魏来), Quanping Fan(范全平), Shaoyi Wang(王少义), Zuhua Yang(杨祖华), Weimin Zhou(周维民), Leifeng Cao(曹磊峰), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(1): 014209.
[10] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[11] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[12] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[13] Topological resonators based on hexagonal-star valley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!