Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 024301    DOI: 10.1088/1674-1056/27/2/024301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multiple off-axis acoustic vortices generated by dual coaxial vortex beams

Wen Li(李雯)1, Si-Jie Dai(戴思捷)2, Qing-Yu Ma(马青玉)1, Ge-Pu Guo(郭各朴)1, He-Ping Ding(丁鹤平)1
1. Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2. Honors College, Nanjing Normal University, Nanjing 210023, China
Abstract  As a kind of special acoustic field, the helical wavefront of an acoustic vortex (AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular momentum of AVs can be applied to the field of particle manipulation, which attracts more and more attention in acoustic researches. In this paper, by using the simplified circular array of point sources, dual coaxial AV beams are excited by the even-and odd-numbered sources with the topological charges of lE and lO based on the phase-coded approach, and the composite acoustic field with an on-axis center-AV and multiple off-axis sub-AVs can be generated by the superimposition of the AV beams for|lE|≠|lO|. The generation of edge phase dislocation is theoretically derived and numerically analyzed for lE=-lO. The numbers and the topological charges as well as the locations of the center-AV and sub-AVs are demonstrated, which are proved to be determined by the topological charges of the coaxial AV beams. The proposed approach breaks through the limit of only one on-axis AV with a single topological charge along the beam axis, and also provides the feasibility of off-axis particle trapping with multiple AVs in object manipulation.
Keywords:  dual coaxial acoustic vortex (AV) beams      multiple off-axis AVs      on-axis center-AV      topological charge      phase-coded approach  
Received:  29 September 2017      Revised:  09 November 2017      Accepted manuscript online: 
PACS:  43.25.Qp (Radiation pressure?)  
  43.60.Fg (Acoustic array systems and processing, beam-forming)  
  43.38.Hz (Transducer arrays, acoustic interaction effects in arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474166 and 11604156), the Science and Technology Cooperation Projects of People's Republic of China-Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Qing-Yu Ma     E-mail:  maqingyu@njnu.edu.cn
About author:  43.25.Qp; 43.60.Fg; 43.38.Hz

Cite this article: 

Wen Li(李雯), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平) Multiple off-axis acoustic vortices generated by dual coaxial vortex beams 2018 Chin. Phys. B 27 024301

[1] Nye J F and Berry M V 1974 Proc. R. Soc. Lond. A 336 165
[2] Thomas J L and Marchiano R 2003 Phys. Rev. Lett. 91 244302
[3] Bliokh K Y and Freilikher V D 2006 Phys. Rev. B 74 174302
[4] Lekner J 2007 Phys. Rev. E 75 036610
[5] Marchiano R, Coulouvrat F, Ganjehi L, et al. 2008 Phys. Rev. E 77 016605
[6] Santillan AO and Volke-Sepulveda K 2009 Am. J. Phys. 77 209
[7] Soskin M S, Gorshkov VN, Vasnetsov M V, et al. 1997 Phys. Rev. A 56 4064
[8] He H, Friese M E, Heckenberg N R, et al. 1995 Phys. Rev. Lett. 75 826
[9] Hefner B T and Marston P L 1999 J. Acoust. Soc. Am. 106 3313
[10] Marston P L 2009 J. Acoust. Soc. Am. 125 3539
[11] Zhang P, Li T C, Zhu J, et al. 2014 Nat. Commun. 5 4316
[12] Baresch D, Marchiano R, Thomas J L 2013 J. Acoust. Soc. Am. 133 3238
[13] Mitri FG 2013 Appl. Phys. Lett. 103 114102
[14] Zhou Q, Sariola V, Latifi K, et al. 2016 Nat. Commun. 7 12764
[15] Friese M E, Enger J, Rubinszteindunlop H, et al. 1996 Phys. Rev. A 54 1593
[16] Baresch D, Thomas J L, Marchiano R 2013 J. Appl. Phys. 113 184901
[17] Lin S and Crozier K B 2013 ACS Nano 7 1725
[18] Schmiegelow C T, Schulz J, Kaufmann H, et al. 2016 Nat. Commun. 7 12998
[19] Kotlyar VV, Kovalev A A and Porfirev A P 2016 J. Appl. Phys. 120 023101
[20] Guo C S, Zhang Y, Han Y J, et al. 2006 Opt. Commun. 259 449
[21] Maleev I D and Swartzlander G A 2003 J. Opt. Soc. Am. B 20 1169
[22] Gan X T, Zhao J L, Liu S, et al. 2009 Chin. Opt. Lett. 7 1142
[23] Baumann S M, Kalb DM, Macmillan L H, et al. 2009 Opt. Express 17 9818
[24] Huang S J, Gu T T, Miao Z, et al. 2014 Acta Phys. Sin. 63 244103(in Chinese)
[25] Mritri F G 2014 Phys. Rev. E 89 023205
[26] Broadbent E G and Moored W 1979 Philosoph. Trans. Roy. Soc. B Biol. Sci. 290 353
[27] Wu J R 1991 J. Acoust. Soc. Am. 89 2140
[28] Feng X, Gao F and Zheng Y 2013 Appl. Phys. Lett. 103 218101
[29] Wang T, Ke M, Qiu C, et al. 2016 J. Appl. Phys. 119 214502
[30] Torr G R 1984 Am. J. Phys. 52 402
[31] Mritri F G 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 662
[32] Marzo A, Seah S A, Drinkwater B W, et al. 2015 Nat. Commun. 6 8661
[33] Jiang X, Li Y, Liang B, et al. 2016 Phys. Rev. Lett. 117 034301
[34] Yang L, Ma Q Y, Tu J, et al. 2013 J. Appl. Phys. 113 154904
[35] Zheng HX, Gao L, Ma QY, et al. 2014 J. Appl. Phys. 115 084909
[36] Gao L, Zheng H X, Ma Q Y, et al. 2014 J. Appl. Phys. 116 024905
[37] Li Y Z, Guo G P, Ma Q Y, et al. 2017 J. Appl. Phys. 121 164901
[38] Petrov D V 2001 Opt. Commun. 200 387
[39] Kivshar Y S and Nepomnyashchy A 2000 Opt. Lett. 25 123
[40] Hong Z Y, Geng D L, Qin X P, et al. 2017 Acta Phys. Sin. 66 124301(in Chinese)
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[3] Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进). Chin. Phys. B, 2021, 30(10): 104203.
[4] Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction
Chao-Fan Gong(龚超凡), Jing-Jing Li(李晶晶), Kai Guo(郭凯), Hong-Ping Zhou(周红平)†, and Zhong-Yi Guo(郭忠义)‡. Chin. Phys. B, 2020, 29(10): 104301.
[5] Propagation dynamics of off-axis noncanonical vortices in a collimated Gaussian beam
Cheng Yin(殷澄), Xuefen Kan(阚雪芬), Hailang Dai(戴海浪), Minglei Shan(单鸣雷), Qingbang Han(韩庆邦), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(3): 034205.
[6] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[7] Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit
Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉). Chin. Phys. B, 2017, 26(9): 094202.
[8] Composite optical vortices in noncollinear Laguerre--Gaussian beams and their propagation in free space
Cheng Ke(程科), Liu Pu-Sheng(刘普生), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2008, 17(5): 1743-1751.
[9] Topological susceptibility from overlap fermion
Ying He-Ping (应和平), Zhang Jian-Bo (张剑波). Chin. Phys. B, 2003, 12(12): 1374-1377.
No Suggested Reading articles found!