| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
NaBH4 induces strong ferromagnetism of Bi2Fe4O9 at room temperature |
| Chong Wang(王冲)1, Guorong Liu(刘国荣)1,†, Xiaofeng Sun(孙小峰)2, Jinyuan Ma(马金元)2, Tao Xian(县涛)3, and Hua Yang(杨华)1,2 |
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China; 2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China; 3 College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China |
|
|
|
|
Abstract Bi$_{2}$Fe$_{4}$O$_{9}$ nanosheets were prepared using a hydrothermal method, followed by the introduction of NaBH$_{4}$ and high-temperature calcination, which successfully induced strong ferromagnetism in the material at room temperature ($M_{\rm S} = 10.22$ emu/g and $M_{\rm r} = 2.93$ emu/g). This work demonstrates for the first time that Bi$_{2}$Fe$_{4}$O$_{9}$ can exhibit such strong ferromagnetism at room temperature, with potential for further enhancements. Meanwhile, the ferroelectric properties of the samples were investigated. X-ray diffraction confirmed that the samples were single-phase with no detectable impurities. Based on a series of characterization analyses, it is inferred that Bi vacancies contribute to the observed strong magnetism.
|
Received: 23 April 2025
Revised: 25 June 2025
Accepted manuscript online: 26 June 2025
|
|
PACS:
|
75.75.Cd
|
(Fabrication of magnetic nanostructures)
|
| |
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
| |
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
| Fund: This work was supported by the Natural Science Foundation of Gansu Province of China (Grant No. 24JRRA171), the Postgraduate “Innovative Star” Project of Gansu Provincial Department of Education (Grant No. 2025CXZX-587), and the National Natural Science Foundation of China (Grant No. 52162040). |
Corresponding Authors:
Guorong Liu
E-mail: liugr07@163.com
|
Cite this article:
Chong Wang(王冲), Guorong Liu(刘国荣), Xiaofeng Sun(孙小峰), Jinyuan Ma(马金元), Tao Xian(县涛), and Hua Yang(杨华) NaBH4 induces strong ferromagnetism of Bi2Fe4O9 at room temperature 2025 Chin. Phys. B 34 127503
|
[1] Curie P 1894 J. Phys. Theor. Appl. 3 393 [2] Schmid H 1994 Ferroelectrics 162 317 [3] Catalan G and Scott J F 2009 Adv. Mater. 21 2463 [4] Safi R and Shokrollahi H 2012 Prog. Solid State Chem. 40 6 [5] Allibe J, Fusil S, Bouzehouane K, Daumont C, Sando D, Jacquet E, Deranlot C, Bibes M and Barthelemy A 2012 Nano Lett. 12 1141 [6] Poghossian A S, Abovian H V, Avakian P B, Mkrtchian S H and Haroutunian V M 1991 Sens. Actuators B 4 545 [7] Wang T, Xu Y, Liu Y, Dai X, Yan P, Wang J, Wang S, Deng Y, He K, Li C, Wang Z, Zou W, Wen R, Hao Y and He L 2024 Chin. Phys. Lett. 41 107502 [8] Zha H, Li W, Zhang G, Liu W, Deng L, Jiang Q, Ye M, Wu H, Chang H and Qiao S 2023 Chin. Phys. Lett. 40 087501 [9] Peng X, Si M and Gao D 2024 Chin. Phys. B 33 017503 [10] Dzyaloshinskii I E 1960 Sov. Phys. JETP 10 628 [11] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719 [12] Young S M, Zheng F and Rappe A M 2012 Phys. Rev. Lett. 109 236601 [13] Seidel J, Fu D, Yang S Y, Alarco-Llado E, Wu J, Ramesh R and Ager Ⅲ J W 2011 Phys. Rev. Lett. 107 126805 [14] Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W and Ramesh R 2009 Science 326 977 [15] Bhatnagar A, Roy C A, Heon K Y, Hesse D and Alexe M 2013 Nat. Commun. 4 2835 [16] Choi T, Lee S, Choi Y J, Kiryukhin V and Cheong S W 2009 Science 324 63 [17] Shamir N, Gurewitz E and Shaked H 1978 Acta Crystallogr. A 34 662 [18] Qiu Y, Zou Z J, Sang R R, Wang H, Xue D, Tian Z M, Gong G S and Yuan S L 2015 J. Mater. Sci.: Mater. Electron. 26 1732 [19] Tian Z M, Yuan S L, Wang X L, Zheng X F, Yin S Y, Wang C H and Liu L 2009 J. Appl. Phys. 106 103912 [20] Tian Z M, Qiu Y, Yuan S L, Wu M S, Huo S X and Duan H N 2010 J. Appl. Phys. 108 064110 [21] Mohapatra S R, Sahu B, Chandrasekhar M, Kumar P, Kaushik S D, Rath S and Singh A K 2016 Ceram. Int. 42 12352 [22] Pooladi M, Sharifi I and Behzadipour M 2020 Ceram. Int. 46 18453 [23] Raghavan C M, Kim J W, Choi J Y, Kim J W and Kim S S 2014 Ceram. Int. 40 14165 [24] Rao S K, Abhinav E M, Jaison D, Sundararaj A, Santhiya M, Althaf R and Gopalakrishnan C 2020 Vacuum 172 109109 [25] Yuan X, Shi L, Zhao J, Zhou S and Guo J 2018 Scr. Mater. 146 55 [26] Su C, Li R, Li C and Wang W 2022 Appl. Catal. B 310 121330 [27] Liu B, Wang X, Zhang Y, Wan K, Xu L, Ma S, Zhao R, Wang S and Huang W 2024 Adv. Energy Mater. 2403835 [28] Lu Y, Yang Y, Fan X, Li Y, Zhou D, Cai B, Wang L, Fan K and Zhang K 2022 Adv. Mater. 34 2108178 [29] Yuan Y, Kotiuga M, Park T J, Patel R K, Ni Y, Saha A, Zhou H, Sadowski J T, Mahboob A A, Yu H, Du k, Zhu M, Deng S, Bisht R S, Lyu X, Wu C T M, Ye P D, Sengupta A, Cheong S W, Xu X, Rabe K M and Ramanathan S 2024 Nat. Commun. 15 4717 [30] Gamage S, Manna S, Zajac M, Hancock S, Wang Q, Singh S, Ghafariasl M, Yao K, Tiwald T E, Park T J, Landau D P, Wen H, Sankaranarayanan S K R S, Darancet P, Ramanathan S and Abate Y 2024 ACS Nano 18 2105 [31] Martelli P, Caputo R, Remhof A, Mauron P, Borgschulte A and Zuttel A 2010 J. Phys. Chem. C 114 7173 [32] Wang Y, Sun X, Ma J, Yi Z, Wang S, Liu G and Yang H 2024 Sep. Purif. Technol. 337 126392 [33] Du Y, Lu T, Li X, Liu Y, Sun W, Zhang S and Cheng Z 2022 Nano Energy 104 107919 [34] Dutta D P, Sudakar C, Mocherla P S, Mandal B P, Jayakumar O D and Tyagi A K 2012 Mater. Chem. Phys. 135 998 [35] Ma F and Zhao H 2019 Russ. J. Phys. Chem. A 93 2079 [36] Meyer R, Waser R, Prume K, Schmitz T and Tiedke S 2005 Appl. Phys. Lett. 86 142907 [37] Iliev M N, Litvinchuk A P, Hadjiev V G, Gospodinov M M, Skumryev V and Ressouche E 2010 Phys. Rev. B 81 024302 [38] Hua H, Feng F, Du M, Ma Y, Pu Y, Zhang J and Li X A 2021 Appl. Surf. Sci. 541 148428 [39] Su C, Li C, Li R and Wang W 2023 Chem. Eng. J. 452 139300 [40] Kitajima M 1997 Crit. Rev. Solid State Mater. Sci. 22 275 [41] Liu H, Li L, Guo C, Ning J, Zhong Y and Hu Y 2020 Chem. Eng. J. 385 123929 [42] Ressouche E, Simonet V, Canals B, Gospodinov M and Skumryev V 2009 Phys. Rev. Lett. 103 267204 [43] Beauvois K, Simonet V, Petit S, Robert J, Bourdarot F, Gospodinov M, Mukhhin A A, Ballou R and Skumryev V 2020 Phys. Rev. Lett. 124 127202 [44] Pchelkina Z V and Streltsov S V 2013 Phys. Rev. B 88 054424 [45] Jindal K, Ameer S, Tomar M, Jha P K and Gupta V 2021 Mater. Today Proc. 47 1637 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|