Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 127503    DOI: 10.1088/1674-1056/ade855
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

NaBH4 induces strong ferromagnetism of Bi2Fe4O9 at room temperature

Chong Wang(王冲)1, Guorong Liu(刘国荣)1,†, Xiaofeng Sun(孙小峰)2, Jinyuan Ma(马金元)2, Tao Xian(县涛)3, and Hua Yang(杨华)1,2
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;
3 College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China
Abstract  Bi$_{2}$Fe$_{4}$O$_{9}$ nanosheets were prepared using a hydrothermal method, followed by the introduction of NaBH$_{4}$ and high-temperature calcination, which successfully induced strong ferromagnetism in the material at room temperature ($M_{\rm S} = 10.22$ emu/g and $M_{\rm r} = 2.93$ emu/g). This work demonstrates for the first time that Bi$_{2}$Fe$_{4}$O$_{9}$ can exhibit such strong ferromagnetism at room temperature, with potential for further enhancements. Meanwhile, the ferroelectric properties of the samples were investigated. X-ray diffraction confirmed that the samples were single-phase with no detectable impurities. Based on a series of characterization analyses, it is inferred that Bi vacancies contribute to the observed strong magnetism.
Keywords:  Bi$_{2}$Fe$_{4}$O$_{9}$      strong ferromagnetism      room temperature      NaBH$_{4}$  
Received:  23 April 2025      Revised:  25 June 2025      Accepted manuscript online:  26 June 2025
PACS:  75.75.Cd (Fabrication of magnetic nanostructures)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
Fund: This work was supported by the Natural Science Foundation of Gansu Province of China (Grant No. 24JRRA171), the Postgraduate “Innovative Star” Project of Gansu Provincial Department of Education (Grant No. 2025CXZX-587), and the National Natural Science Foundation of China (Grant No. 52162040).
Corresponding Authors:  Guorong Liu     E-mail:  liugr07@163.com

Cite this article: 

Chong Wang(王冲), Guorong Liu(刘国荣), Xiaofeng Sun(孙小峰), Jinyuan Ma(马金元), Tao Xian(县涛), and Hua Yang(杨华) NaBH4 induces strong ferromagnetism of Bi2Fe4O9 at room temperature 2025 Chin. Phys. B 34 127503

[1] Curie P 1894 J. Phys. Theor. Appl. 3 393
[2] Schmid H 1994 Ferroelectrics 162 317
[3] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[4] Safi R and Shokrollahi H 2012 Prog. Solid State Chem. 40 6
[5] Allibe J, Fusil S, Bouzehouane K, Daumont C, Sando D, Jacquet E, Deranlot C, Bibes M and Barthelemy A 2012 Nano Lett. 12 1141
[6] Poghossian A S, Abovian H V, Avakian P B, Mkrtchian S H and Haroutunian V M 1991 Sens. Actuators B 4 545
[7] Wang T, Xu Y, Liu Y, Dai X, Yan P, Wang J, Wang S, Deng Y, He K, Li C, Wang Z, Zou W, Wen R, Hao Y and He L 2024 Chin. Phys. Lett. 41 107502
[8] Zha H, Li W, Zhang G, Liu W, Deng L, Jiang Q, Ye M, Wu H, Chang H and Qiao S 2023 Chin. Phys. Lett. 40 087501
[9] Peng X, Si M and Gao D 2024 Chin. Phys. B 33 017503
[10] Dzyaloshinskii I E 1960 Sov. Phys. JETP 10 628
[11] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[12] Young S M, Zheng F and Rappe A M 2012 Phys. Rev. Lett. 109 236601
[13] Seidel J, Fu D, Yang S Y, Alarco-Llado E, Wu J, Ramesh R and Ager Ⅲ J W 2011 Phys. Rev. Lett. 107 126805
[14] Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W and Ramesh R 2009 Science 326 977
[15] Bhatnagar A, Roy C A, Heon K Y, Hesse D and Alexe M 2013 Nat. Commun. 4 2835
[16] Choi T, Lee S, Choi Y J, Kiryukhin V and Cheong S W 2009 Science 324 63
[17] Shamir N, Gurewitz E and Shaked H 1978 Acta Crystallogr. A 34 662
[18] Qiu Y, Zou Z J, Sang R R, Wang H, Xue D, Tian Z M, Gong G S and Yuan S L 2015 J. Mater. Sci.: Mater. Electron. 26 1732
[19] Tian Z M, Yuan S L, Wang X L, Zheng X F, Yin S Y, Wang C H and Liu L 2009 J. Appl. Phys. 106 103912
[20] Tian Z M, Qiu Y, Yuan S L, Wu M S, Huo S X and Duan H N 2010 J. Appl. Phys. 108 064110
[21] Mohapatra S R, Sahu B, Chandrasekhar M, Kumar P, Kaushik S D, Rath S and Singh A K 2016 Ceram. Int. 42 12352
[22] Pooladi M, Sharifi I and Behzadipour M 2020 Ceram. Int. 46 18453
[23] Raghavan C M, Kim J W, Choi J Y, Kim J W and Kim S S 2014 Ceram. Int. 40 14165
[24] Rao S K, Abhinav E M, Jaison D, Sundararaj A, Santhiya M, Althaf R and Gopalakrishnan C 2020 Vacuum 172 109109
[25] Yuan X, Shi L, Zhao J, Zhou S and Guo J 2018 Scr. Mater. 146 55
[26] Su C, Li R, Li C and Wang W 2022 Appl. Catal. B 310 121330
[27] Liu B, Wang X, Zhang Y, Wan K, Xu L, Ma S, Zhao R, Wang S and Huang W 2024 Adv. Energy Mater. 2403835
[28] Lu Y, Yang Y, Fan X, Li Y, Zhou D, Cai B, Wang L, Fan K and Zhang K 2022 Adv. Mater. 34 2108178
[29] Yuan Y, Kotiuga M, Park T J, Patel R K, Ni Y, Saha A, Zhou H, Sadowski J T, Mahboob A A, Yu H, Du k, Zhu M, Deng S, Bisht R S, Lyu X, Wu C T M, Ye P D, Sengupta A, Cheong S W, Xu X, Rabe K M and Ramanathan S 2024 Nat. Commun. 15 4717
[30] Gamage S, Manna S, Zajac M, Hancock S, Wang Q, Singh S, Ghafariasl M, Yao K, Tiwald T E, Park T J, Landau D P, Wen H, Sankaranarayanan S K R S, Darancet P, Ramanathan S and Abate Y 2024 ACS Nano 18 2105
[31] Martelli P, Caputo R, Remhof A, Mauron P, Borgschulte A and Zuttel A 2010 J. Phys. Chem. C 114 7173
[32] Wang Y, Sun X, Ma J, Yi Z, Wang S, Liu G and Yang H 2024 Sep. Purif. Technol. 337 126392
[33] Du Y, Lu T, Li X, Liu Y, Sun W, Zhang S and Cheng Z 2022 Nano Energy 104 107919
[34] Dutta D P, Sudakar C, Mocherla P S, Mandal B P, Jayakumar O D and Tyagi A K 2012 Mater. Chem. Phys. 135 998
[35] Ma F and Zhao H 2019 Russ. J. Phys. Chem. A 93 2079
[36] Meyer R, Waser R, Prume K, Schmitz T and Tiedke S 2005 Appl. Phys. Lett. 86 142907
[37] Iliev M N, Litvinchuk A P, Hadjiev V G, Gospodinov M M, Skumryev V and Ressouche E 2010 Phys. Rev. B 81 024302
[38] Hua H, Feng F, Du M, Ma Y, Pu Y, Zhang J and Li X A 2021 Appl. Surf. Sci. 541 148428
[39] Su C, Li C, Li R and Wang W 2023 Chem. Eng. J. 452 139300
[40] Kitajima M 1997 Crit. Rev. Solid State Mater. Sci. 22 275
[41] Liu H, Li L, Guo C, Ning J, Zhong Y and Hu Y 2020 Chem. Eng. J. 385 123929
[42] Ressouche E, Simonet V, Canals B, Gospodinov M and Skumryev V 2009 Phys. Rev. Lett. 103 267204
[43] Beauvois K, Simonet V, Petit S, Robert J, Bourdarot F, Gospodinov M, Mukhhin A A, Ballou R and Skumryev V 2020 Phys. Rev. Lett. 124 127202
[44] Pchelkina Z V and Streltsov S V 2013 Phys. Rev. B 88 054424
[45] Jindal K, Ameer S, Tomar M, Jha P K and Gupta V 2021 Mater. Today Proc. 47 1637
[1] Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
Sihan Chen(陈思汗), Jun Li(黎俊), Keke Liu(刘可可), Xiaochen Sun(孙笑晨), Jingwei Wan(万京伟), Huiyu Zhai(翟慧宇), Xinfeng Tang(唐新峰), and Gangjian Tan(谭刚健). Chin. Phys. B, 2024, 33(8): 088203.
[2] Loading uniform Ag3PO4 nanoparticles on three-dimensional peony-like WO3 for good stability and excellent selectivity towards NH3 at room temperature
Xingyan Shao(邵星炎), Fuchao Jia(贾福超), Tingting Liu(刘婷婷), Jiancheng Liu(刘健诚), Xiaomei Wang(王小梅), Guangchao Yin(尹广超), Na Lv(吕娜), Tong Zhou(周通), Ramachandran Rajan, and Bo Liu(刘波). Chin. Phys. B, 2023, 32(8): 080703.
[3] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[4] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[5] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[6] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[7] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[8] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
[9] Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047209.
[10] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[11] Room temperature ferromagnetism in un-doped amorphous HfO2 nano-helix arrays
Xie Qian (谢谦), Wang Wei-Peng (王炜鹏), Xie Zheng (谢拯), Zhan Peng (战鹏), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军). Chin. Phys. B, 2015, 24(5): 057503.
[12] Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles
Rajwali Khan, Fang Ming-Hu (方明虎). Chin. Phys. B, 2015, 24(12): 127803.
[13] Si nanopillar arrays with nanocrystals produced by template-induced growth at room temperature
Bai An-Qi(白安琪), Zheng Jun(郑军), Tao Ye-Liao(陶冶了), Zuo Yu-Hua(左玉华), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), and Wang Qi-Ming(王启明) . Chin. Phys. B, 2011, 20(11): 116103.
[14] 1-W, high-repetition-rate room temperature operation of mid-infrared optical parametric oscillator based on periodically poled MgO-doped LiNbO
Zhang Tie-Li(张铁犁), Zhang Bai-Gang(张百钢), Xu De-Gang(徐德刚), Wang Peng(王鹏), Ji Feng(纪峰), and Yao Jian-Quan(姚建铨) . Chin. Phys. B, 2008, 17(2): 633-636.
[15] Large magnetic entropy change near room temperature in the LaFe11.5Si1.5H1.3 interstitial compound
Chen Yuan-Fu (陈远富), Wang Fang (王芳), Shen Bao-Gen (沈保根), Hu Feng-Xia (胡凤霞), Cheng Zhao-Hua (成昭华), Wang Guang-Jun (王光军), Sun Ji-Rong (孙继荣). Chin. Phys. B, 2002, 11(7): 741-744.
No Suggested Reading articles found!